肺动脉高压
平滑肌
血小板
化学
细胞生物学
内科学
内分泌学
医学
药理学
心脏病学
生物
作者
Aya Yamamura,Moe Fujiwara,Akiko Kawade,Taiki Amano,Alamgir Hossain,Md Junayed Nayeem,Rubii Kondo,Yoshiaki Suzuki,Yasumichi Inoue,Hidetoshi Hayashi,Susumu Suzuki,Motohiko Sato,Hisao Yamamura
标识
DOI:10.1016/j.ejphar.2024.176564
摘要
Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor β and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor β and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor β after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor β-STAT3/NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.
科研通智能强力驱动
Strongly Powered by AbleSci AI