Structure Embedded Nucleus Classification for Histopathology Images

模式识别(心理学) 人工智能 计算机科学 核心 人工神经网络 多边形(计算机图形学) 图形 理论计算机科学 生物 电信 帧(网络) 细胞生物学
作者
Wei Lou,Xiang Wan,Guanbin Li,Xiaoying Lou,Chenghang Li,Feng Gao,Haofeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3149-3160 被引量:7
标识
DOI:10.1109/tmi.2024.3388328
摘要

Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural network based methods are affected by the local receptive field of convolutions, and pay less attention to the spatial distribution of nuclei or the irregular contour shape of a nucleus. In this paper, we first propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order, and employ a recurrent neural network that aggregates the sequential change in distance between key points to obtain learnable shape features. Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations. To capture the correlations between the categories of nuclei and their surrounding tissue patterns, we further introduce edge features that are defined as the background textures between adjacent nuclei. Lastly, we integrate both polygon and graph structure learning mechanisms into a whole framework that can extract intra and inter-nucleus structural characteristics for nuclei classification. Experimental results show that the proposed framework achieves significant improvements compared to the previous methods. Code and data are made available via https://github.com/lhaof/SENC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助刻苦友安采纳,获得20
1秒前
小哀完成签到,获得积分10
1秒前
1秒前
1秒前
情怀应助2421154880采纳,获得10
1秒前
岳维芸发布了新的文献求助10
2秒前
2秒前
2秒前
d叨叨鱼发布了新的文献求助10
2秒前
ycxlb发布了新的文献求助10
2秒前
Lin发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
4秒前
影影发布了新的文献求助10
5秒前
slow发布了新的文献求助10
5秒前
灿灿呀完成签到,获得积分20
6秒前
6秒前
圣晟胜完成签到,获得积分10
6秒前
张伯伦发布了新的文献求助10
6秒前
苏莉完成签到,获得积分10
6秒前
LarryC完成签到,获得积分10
7秒前
7秒前
jlw完成签到,获得积分10
7秒前
7秒前
8秒前
Lucas应助ZYYYY采纳,获得10
8秒前
星期八完成签到,获得积分10
8秒前
贾不努力发布了新的文献求助10
9秒前
学术智子完成签到,获得积分10
9秒前
浮游应助小魏采纳,获得10
9秒前
9秒前
涛涛完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
YN3585发布了新的文献求助10
11秒前
蜡笔小新完成签到,获得积分10
11秒前
无限思真完成签到,获得积分10
11秒前
Aliquat_336发布了新的文献求助10
11秒前
IRISR完成签到,获得积分10
12秒前
小吴同学发布了新的文献求助10
12秒前
科研通AI2S应助slow采纳,获得10
13秒前
苛帅发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186