Structure Embedded Nucleus Classification for Histopathology Images

模式识别(心理学) 人工智能 计算机科学 核心 人工神经网络 多边形(计算机图形学) 图形 理论计算机科学 生物 电信 帧(网络) 细胞生物学
作者
Wei Lou,Xiang Wan,Guanbin Li,Xiaoying Lou,Chenghang Li,Feng Gao,Haofeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3149-3160 被引量:7
标识
DOI:10.1109/tmi.2024.3388328
摘要

Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural network based methods are affected by the local receptive field of convolutions, and pay less attention to the spatial distribution of nuclei or the irregular contour shape of a nucleus. In this paper, we first propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order, and employ a recurrent neural network that aggregates the sequential change in distance between key points to obtain learnable shape features. Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations. To capture the correlations between the categories of nuclei and their surrounding tissue patterns, we further introduce edge features that are defined as the background textures between adjacent nuclei. Lastly, we integrate both polygon and graph structure learning mechanisms into a whole framework that can extract intra and inter-nucleus structural characteristics for nuclei classification. Experimental results show that the proposed framework achieves significant improvements compared to the previous methods. Code and data are made available via https://github.com/lhaof/SENC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
环游世界完成签到 ,获得积分10
刚刚
dd完成签到,获得积分10
刚刚
张文静发布了新的文献求助10
1秒前
bkagyin应助Giroro_roro采纳,获得10
1秒前
桐桐应助fang采纳,获得10
2秒前
2秒前
turquoise应助zzjl采纳,获得10
2秒前
糖糖糖唐完成签到,获得积分10
2秒前
孙福禄应助quan采纳,获得10
2秒前
小蘑菇应助黑化小狗采纳,获得10
3秒前
JamesPei应助忐忑的远山采纳,获得20
3秒前
端庄不斜完成签到,获得积分10
3秒前
4秒前
今后应助外向的新儿采纳,获得10
4秒前
小锤发布了新的文献求助10
4秒前
HanruiWang完成签到,获得积分10
4秒前
5秒前
bkagyin应助机灵的怀绿采纳,获得10
5秒前
meiwei完成签到,获得积分10
6秒前
hw20010926完成签到 ,获得积分10
6秒前
dtf完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
松松关注了科研通微信公众号
8秒前
8秒前
大胆的以冬完成签到,获得积分10
8秒前
大方的觅海完成签到,获得积分10
9秒前
只如初发布了新的文献求助10
10秒前
SYLH应助斯文火龙果采纳,获得10
10秒前
易安发布了新的文献求助10
10秒前
木桶人plus完成签到 ,获得积分10
10秒前
shino发布了新的文献求助10
11秒前
11秒前
学术z完成签到,获得积分10
12秒前
晓军完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650