Structure Embedded Nucleus Classification for Histopathology Images

模式识别(心理学) 人工智能 计算机科学 核心 人工神经网络 多边形(计算机图形学) 图形 理论计算机科学 生物 电信 帧(网络) 细胞生物学
作者
Wei Lou,Xiang Wan,Guanbin Li,Xiaoying Lou,Chenghang Li,Feng Gao,Haofeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3149-3160 被引量:7
标识
DOI:10.1109/tmi.2024.3388328
摘要

Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural network based methods are affected by the local receptive field of convolutions, and pay less attention to the spatial distribution of nuclei or the irregular contour shape of a nucleus. In this paper, we first propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order, and employ a recurrent neural network that aggregates the sequential change in distance between key points to obtain learnable shape features. Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations. To capture the correlations between the categories of nuclei and their surrounding tissue patterns, we further introduce edge features that are defined as the background textures between adjacent nuclei. Lastly, we integrate both polygon and graph structure learning mechanisms into a whole framework that can extract intra and inter-nucleus structural characteristics for nuclei classification. Experimental results show that the proposed framework achieves significant improvements compared to the previous methods. Code and data are made available via https://github.com/lhaof/SENC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助lyy采纳,获得10
刚刚
江生发布了新的文献求助10
刚刚
刚刚
不知道完成签到,获得积分10
1秒前
田様应助友好代亦采纳,获得10
1秒前
1秒前
Orange应助勤奋的熊猫采纳,获得10
2秒前
Akim应助Alex采纳,获得30
2秒前
土豆晴发布了新的文献求助10
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
2秒前
lihoujunertou发布了新的文献求助10
3秒前
清蒸鱼发布了新的文献求助10
3秒前
Reset完成签到,获得积分10
3秒前
3秒前
成就翠柏发布了新的文献求助10
4秒前
浮世之笙发布了新的文献求助10
4秒前
luo08发布了新的文献求助10
4秒前
LFZ完成签到 ,获得积分10
4秒前
愉快的莹发布了新的文献求助10
4秒前
吴大宝完成签到,获得积分10
4秒前
光亮初兰完成签到,获得积分10
4秒前
suohaiyun完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
JamesPei应助叶子采纳,获得10
5秒前
JamesPei应助欣慰的妙菱采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
樱桃完成签到,获得积分10
6秒前
shiyue发布了新的文献求助10
7秒前
小青椒应助loren采纳,获得30
7秒前
李爱国应助夜信采纳,获得10
7秒前
沉默襄发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
研友_n0gx5L发布了新的文献求助10
9秒前
李爱国应助小脚丫采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791