计算机科学
端到端原则
雷达
人工智能
遥感
深度学习
睡眠(系统调用)
宽带
阶段(地层学)
电信
地质学
电子工程
工程类
古生物学
操作系统
作者
Jonghyun Park,Seung-Man Yang,Gyoo-Pil Chung,Ivo Junior Leal Zanghettin,Jonghee Han
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:12: 61252-61264
被引量:1
标识
DOI:10.1109/access.2024.3390391
摘要
As an increasing number of people suffer from sleep disorders, such as insomnia or sleep apnea, sleep monitoring and management using consumer devices have gained increasing attention from research communities. As sleep quality is closely related to sleep structure based on hypnograms, the classification of sleep stages over the course of the night is important for accurate sleep monitoring. We present sleep stage classification using a smartphone equipped with ultra-wideband (UWB) radar. We focused on the development of easily accessible sleep monitoring system for the general population by placing the smartphone on a table near a bed, which is commonly used during sleep. We collected 509 nights of UWB radar and nocturnal in-laboratory polysomnography (PSG) data from various participants, including patients with apnea, using a customized Samsung Galaxy smartphone with a UWB radar chip placed on a table near the bed. A combination of 1D convolutional neural network and transformer architecture was proposed in this study, and a domain adaptation technique was applied to train the model with both large-scale respiratory signals from open database PSGs and UWB radar data to boost the performance by overcoming the lack of UWB radar data. With 5-fold validation, an epoch-by-epoch comparison between the predicted and expert-annotated four sleep stages (Wake, REM sleep, light sleep, and deep sleep) resulted in 0.76 of accuracy and 0.64 of Cohen's kappa. This study demonstrated that sleep stages can be monitored with substantial accuracy by simply placing a smartphone on a bedtable, making it highly usable and reliable in real use cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI