Ultra-wideband Radar-based Sleep Stage Classification in Smartphone using an End-to-end Deep Learning

计算机科学 端到端原则 雷达 人工智能 遥感 深度学习 睡眠(系统调用) 宽带 阶段(地层学) 电信 地质学 电子工程 工程类 古生物学 操作系统
作者
Jonghyun Park,Seung-Man Yang,Gyoo-Pil Chung,Ivo Junior Leal Zanghettin,Jonghee Han
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 61252-61264 被引量:1
标识
DOI:10.1109/access.2024.3390391
摘要

As an increasing number of people suffer from sleep disorders, such as insomnia or sleep apnea, sleep monitoring and management using consumer devices have gained increasing attention from research communities. As sleep quality is closely related to sleep structure based on hypnograms, the classification of sleep stages over the course of the night is important for accurate sleep monitoring. We present sleep stage classification using a smartphone equipped with ultra-wideband (UWB) radar. We focused on the development of easily accessible sleep monitoring system for the general population by placing the smartphone on a table near a bed, which is commonly used during sleep. We collected 509 nights of UWB radar and nocturnal in-laboratory polysomnography (PSG) data from various participants, including patients with apnea, using a customized Samsung Galaxy smartphone with a UWB radar chip placed on a table near the bed. A combination of 1D convolutional neural network and transformer architecture was proposed in this study, and a domain adaptation technique was applied to train the model with both large-scale respiratory signals from open database PSGs and UWB radar data to boost the performance by overcoming the lack of UWB radar data. With 5-fold validation, an epoch-by-epoch comparison between the predicted and expert-annotated four sleep stages (Wake, REM sleep, light sleep, and deep sleep) resulted in 0.76 of accuracy and 0.64 of Cohen's kappa. This study demonstrated that sleep stages can be monitored with substantial accuracy by simply placing a smartphone on a bedtable, making it highly usable and reliable in real use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
完美世界应助海4015采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
无私的香菇完成签到,获得积分10
2秒前
橘子星发布了新的文献求助10
4秒前
慕青应助whr采纳,获得10
4秒前
wen发布了新的文献求助10
5秒前
sophia发布了新的文献求助20
7秒前
CFF发布了新的文献求助10
7秒前
8秒前
wen关注了科研通微信公众号
8秒前
9秒前
9秒前
10秒前
10秒前
李爱国应助沉默醉柳采纳,获得10
10秒前
Rita发布了新的文献求助10
13秒前
老刀发布了新的文献求助10
14秒前
14秒前
完美的以寒完成签到 ,获得积分10
15秒前
Lynn发布了新的文献求助10
15秒前
Jasper应助wangjing采纳,获得10
15秒前
nanonamo发布了新的文献求助10
15秒前
15秒前
16秒前
CFF完成签到,获得积分10
17秒前
不配.应助clarkq采纳,获得20
17秒前
18秒前
20秒前
whr发布了新的文献求助10
20秒前
烟花应助风车采纳,获得10
21秒前
21秒前
Roy发布了新的文献求助10
22秒前
22秒前
22秒前
cj发布了新的文献求助10
23秒前
zhangxr完成签到,获得积分10
24秒前
Sylvia完成签到,获得积分10
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170078
求助须知:如何正确求助?哪些是违规求助? 2821302
关于积分的说明 7933399
捐赠科研通 2481557
什么是DOI,文献DOI怎么找? 1321856
科研通“疑难数据库(出版商)”最低求助积分说明 633422
版权声明 602567