Fabrication of MOF-rGO aerogels to enhance electromagnetic wave absorption by adjusting the morphology and structure of MOFs by electron transfer

石墨烯 材料科学 反射损耗 制作 氧化物 纳米技术 吸收(声学) 衰减 异质结 微波食品加热 退火(玻璃) 化学工程 光电子学 复合材料 复合数 光学 病理 医学 替代医学 物理 工程类 量子力学 冶金
作者
Kunyao Cao,Weiping Ye,Yue Zhang,Zhiyuan Chen,Rui Zhao,Weidong Xue
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:489: 151384-151384 被引量:54
标识
DOI:10.1016/j.cej.2024.151384
摘要

Graphene and its derivatives have become the star materials in the field of electromagnetic wave (EMW) absorption, and have been widely studied because of their unique structure and excellent properties. However, the high electrical conductivity of graphene-based material leads to poor impedance matching performances, so it often needs to be annealed at high temperatures, which is a intricate procedure and cause the waste of energy. Herein, we develop a convenient strategy to synthesize metal organic framework-reduced graphene oxide (MOF-rGO) aerogels through facile hydrothermal and freeze drying procedure. Firstly, the excessive electrons on graphene can be transferred to MOF, in this way, no annealing is needed. Secondly, the morphology and structure of MOF can be regulated electronically to endow the material with rich heterojunction interfaces and enhance its interfacial polarization. Thirdly, the synthesized aerogels satisfy the requirements of thin thickness, low density and light weight. The fabricated Ni-MOF-rGO and FeNi-MOF-rGO aerogels exhibit remarkable EMW absorption performances with strong reflection loss (RL) and broad effective absorption band (EAB) at the thickness of 2.4 (−47.8 dB and 7.84 GHz) and 2.9 mm (−48.3 dB and 8.32 GHz) whereas the filling contents are just 5 %. Moreover, the attenuation capacity of the fabricated aerogels are verified through the radar-section simulation and the interfacial polarization loss are confirmed by the COMSOL analogue simulation. In a word, this work provides a new afflatus and inspiration for the design of graphene-based EMW absorption materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助good慧采纳,获得10
2秒前
yiriaoxianyu发布了新的文献求助10
2秒前
deletelzr完成签到,获得积分10
2秒前
xsk861777发布了新的文献求助10
3秒前
3秒前
时尚的雁易完成签到,获得积分10
3秒前
NexusExplorer应助lll采纳,获得10
4秒前
CodeCraft应助郭郭郭采纳,获得10
5秒前
ZHANG发布了新的文献求助30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
chemj关注了科研通微信公众号
7秒前
Orange应助xsk861777采纳,获得10
7秒前
Plusonezzz完成签到,获得积分20
7秒前
田様应助YOUNG-M采纳,获得10
8秒前
zhangguo发布了新的文献求助10
9秒前
苹果千筹完成签到,获得积分10
9秒前
蛋筒发布了新的文献求助10
11秒前
浮游应助Plusonezzz采纳,获得10
12秒前
orixero应助薏_采纳,获得10
12秒前
13秒前
13秒前
wanci应助pan采纳,获得10
13秒前
斯文败类应助耍酷的雅阳采纳,获得20
13秒前
科研通AI2S应助Sara采纳,获得10
14秒前
14秒前
15秒前
杨杨杨发布了新的文献求助10
17秒前
lll发布了新的文献求助10
18秒前
MJJJ完成签到,获得积分10
18秒前
nana发布了新的文献求助10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得30
19秒前
suliang发布了新的文献求助10
19秒前
sevenhill应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617