Fabrication of MOF-rGO aerogels to enhance electromagnetic wave absorption by adjusting the morphology and structure of MOFs by electron transfer

石墨烯 材料科学 反射损耗 制作 氧化物 纳米技术 吸收(声学) 衰减 异质结 微波食品加热 退火(玻璃) 化学工程 光电子学 复合材料 复合数 光学 病理 医学 替代医学 物理 工程类 量子力学 冶金
作者
Kunyao Cao,Weiping Ye,Yue Zhang,Zhiyuan Chen,Rui Zhao,Weidong Xue
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:489: 151384-151384 被引量:12
标识
DOI:10.1016/j.cej.2024.151384
摘要

Graphene and its derivatives have become the star materials in the field of electromagnetic wave (EMW) absorption, and have been widely studied because of their unique structure and excellent properties. However, the high electrical conductivity of graphene-based material leads to poor impedance matching performances, so it often needs to be annealed at high temperatures, which is a intricate procedure and cause the waste of energy. Herein, we develop a convenient strategy to synthesize metal organic framework-reduced graphene oxide (MOF-rGO) aerogels through facile hydrothermal and freeze drying procedure. Firstly, the excessive electrons on graphene can be transferred to MOF, in this way, no annealing is needed. Secondly, the morphology and structure of MOF can be regulated electronically to endow the material with rich heterojunction interfaces and enhance its interfacial polarization. Thirdly, the synthesized aerogels satisfy the requirements of thin thickness, low density and light weight. The fabricated Ni-MOF-rGO and FeNi-MOF-rGO aerogels exhibit remarkable EMW absorption performances with strong reflection loss (RL) and broad effective absorption band (EAB) at the thickness of 2.4 (−47.8 dB and 7.84 GHz) and 2.9 mm (−48.3 dB and 8.32 GHz) whereas the filling contents are just 5 %. Moreover, the attenuation capacity of the fabricated aerogels are verified through the radar-section simulation and the interfacial polarization loss are confirmed by the COMSOL analogue simulation. In a word, this work provides a new afflatus and inspiration for the design of graphene-based EMW absorption materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赘婿应助jdj采纳,获得10
4秒前
加菲丰丰应助日安采纳,获得20
6秒前
lt0217发布了新的文献求助10
6秒前
落落完成签到,获得积分20
7秒前
852应助开心的渊思采纳,获得10
7秒前
幽默的花瓣完成签到,获得积分10
8秒前
8秒前
水心完成签到 ,获得积分10
9秒前
9秒前
晴天完成签到,获得积分10
9秒前
11111完成签到 ,获得积分10
9秒前
zyz完成签到,获得积分10
10秒前
智博36完成签到,获得积分10
11秒前
善学以致用应助笙默0329采纳,获得10
11秒前
落落发布了新的文献求助10
12秒前
林声完成签到,获得积分10
12秒前
Ava应助还是好忧伤采纳,获得10
14秒前
歪瑞古德发布了新的文献求助10
14秒前
16秒前
juziyaya应助超神采纳,获得50
19秒前
19秒前
oldcat完成签到 ,获得积分10
19秒前
朱朱朱发布了新的文献求助10
20秒前
倪倪发布了新的文献求助10
23秒前
眯眯眼的世界完成签到,获得积分10
25秒前
28秒前
当遇完成签到,获得积分10
28秒前
雪小岳关注了科研通微信公众号
29秒前
田様应助Truman采纳,获得10
30秒前
31秒前
Singularity应助anananan采纳,获得20
32秒前
笙默0329发布了新的文献求助10
33秒前
汉堡包应助桃桃桃桃桃采纳,获得10
33秒前
6666发布了新的文献求助10
34秒前
34秒前
胡子完成签到,获得积分10
34秒前
困敦发布了新的文献求助10
34秒前
李健应助Hustle采纳,获得10
34秒前
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237