Fabrication of MOF-rGO aerogels to enhance electromagnetic wave absorption by adjusting the morphology and structure of MOFs by electron transfer

石墨烯 材料科学 反射损耗 制作 氧化物 纳米技术 吸收(声学) 衰减 异质结 微波食品加热 退火(玻璃) 化学工程 光电子学 复合材料 复合数 光学 病理 医学 替代医学 物理 工程类 量子力学 冶金
作者
Kunyao Cao,Weiping Ye,Yue Zhang,Zhiyuan Chen,Rui Zhao,Weidong Xue
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:489: 151384-151384 被引量:54
标识
DOI:10.1016/j.cej.2024.151384
摘要

Graphene and its derivatives have become the star materials in the field of electromagnetic wave (EMW) absorption, and have been widely studied because of their unique structure and excellent properties. However, the high electrical conductivity of graphene-based material leads to poor impedance matching performances, so it often needs to be annealed at high temperatures, which is a intricate procedure and cause the waste of energy. Herein, we develop a convenient strategy to synthesize metal organic framework-reduced graphene oxide (MOF-rGO) aerogels through facile hydrothermal and freeze drying procedure. Firstly, the excessive electrons on graphene can be transferred to MOF, in this way, no annealing is needed. Secondly, the morphology and structure of MOF can be regulated electronically to endow the material with rich heterojunction interfaces and enhance its interfacial polarization. Thirdly, the synthesized aerogels satisfy the requirements of thin thickness, low density and light weight. The fabricated Ni-MOF-rGO and FeNi-MOF-rGO aerogels exhibit remarkable EMW absorption performances with strong reflection loss (RL) and broad effective absorption band (EAB) at the thickness of 2.4 (−47.8 dB and 7.84 GHz) and 2.9 mm (−48.3 dB and 8.32 GHz) whereas the filling contents are just 5 %. Moreover, the attenuation capacity of the fabricated aerogels are verified through the radar-section simulation and the interfacial polarization loss are confirmed by the COMSOL analogue simulation. In a word, this work provides a new afflatus and inspiration for the design of graphene-based EMW absorption materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助马浩鑫采纳,获得10
刚刚
zqy发布了新的文献求助10
2秒前
文献啊文献完成签到,获得积分10
3秒前
度ewf发布了新的文献求助10
4秒前
Bo关闭了Bo文献求助
6秒前
zhu发布了新的文献求助10
6秒前
玛卡巴卡完成签到 ,获得积分10
7秒前
科研通AI2S应助Yiran采纳,获得10
8秒前
等待的鱼完成签到,获得积分10
9秒前
10秒前
慕青应助zqy采纳,获得10
12秒前
15秒前
15秒前
wushengdeyu完成签到 ,获得积分10
16秒前
李健的粉丝团团长应助lcx采纳,获得10
16秒前
大个应助carnationli采纳,获得10
16秒前
一坨台台发布了新的文献求助10
17秒前
mbf发布了新的文献求助10
18秒前
zhao完成签到,获得积分10
19秒前
CC发布了新的文献求助10
20秒前
norville完成签到,获得积分20
20秒前
科目三应助zhu采纳,获得10
21秒前
李健应助度ewf采纳,获得10
23秒前
慕青应助zwb采纳,获得10
23秒前
无极微光应助忻樱采纳,获得20
23秒前
BowieHuang应助jila采纳,获得10
25秒前
许愿非树完成签到,获得积分10
25秒前
ZJ完成签到,获得积分10
26秒前
bill发布了新的文献求助10
27秒前
28秒前
CC完成签到,获得积分10
29秒前
29秒前
30秒前
35秒前
2150号发布了新的文献求助10
35秒前
carnationli发布了新的文献求助10
35秒前
marcg4完成签到,获得积分10
36秒前
CodeCraft应助老坛采纳,获得10
38秒前
搜集达人应助一坨台台采纳,获得10
40秒前
桐桐应助QAQ小白采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648507
关于积分的说明 14685107
捐赠科研通 4590468
什么是DOI,文献DOI怎么找? 2518535
邀请新用户注册赠送积分活动 1491159
关于科研通互助平台的介绍 1462460