脂质代谢
新陈代谢
化学
分解代谢
生物化学
脂肪酸代谢
细胞生物学
生物
作者
Meng Zhang,Wanhui Zhou,Yu Cao,Liangwei Kou,Chunwei Liu,Xiaoshuang Li,Boxi Zhang,Wenjin Guo,Bin Xu,Yang Liu
标识
DOI:10.1016/j.ijbiomac.2024.131151
摘要
Cold as a common environmental stress, causes increased heat production, accelerated metabolism and even affects its production performance. How to improve the adaptability of the animal organism to cold has been an urgent problem. As a key hub of lipid metabolism, the liver can regulate lipid metabolism to maintain energy balance, and O-GlcNAcylation is a kind of important PTMs, which participates in a variety of signaling and mechanism regulation, and at the same time, is very sensitive to changes in stress and nutritional levels, and is the body's "stress receptors" and "nutrient receptors". Therefore, the aim of this experiment was to investigate the effect of cold-induced O-GlcNAcylation on hepatic lipid metabolism, and to explore the potential connection between O-GlcNAcylation and hepatic lipid metabolism. To investigate the loss of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the precise impacts of additional cold-induced circumstances on liver mass, shape, and metabolic profile, C57 mice were used as an animal model. Using the protein interactions approach, the mechanism of O-GlcNAcylation, as well as the degradation pathway of acyl-Coenzyme A oxidase 1 (ACOX1), were clarified. Additional in vitro analyses of oleic acid (OA) and OGT inhibitor tetraoxan (Alloxan) (Sigma, 2244-11-3) on lipid breakdown in AML-12 cells. In C57BL/6 mice, deletion of O-GlcNAcylation disrupted lipid metabolism, caused hepatic edema and fibrosis, and altered mitochondrial apoptosis. This group of modifications was made worse by cold induction. The accumulation of medium- and long-chain fatty acids is a hallmark of lipolysis, which is accelerated by the deletion of O-GlcNAcylation, whereas lipid synthesis is slowed down. The association between ACOX1 and OGT at the K48 gene precludes ubiquitinated degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI