A Low-Slow-Small UAV Detection Method Based on Fusion of Range Doppler Map and Satellite Map

多普勒效应 卫星 遥感 融合 计算机科学 航程(航空) 传感器融合 计算机视觉 人工智能 地理 物理 工程类 航空航天工程 语言学 哲学 天文
作者
Qinxuan Wang,Haoxuan Xu,Shengtai Lin,Zhang Jiawei,Wei Zhang,Shiming Xiang,Meiguo Gao
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (4): 4767-4783
标识
DOI:10.1109/taes.2024.3381086
摘要

Unmanned Aerial Vehicle (UAV) targets are characterized by slow speed, low flying altitude, and small Radar Cross Section, which provides them with great stealth properties. In the urban low-altitude environment, the detection of such UAV targets is facing complex interference. To address these issues, this paper proposes an UAV detection method based on the fusion of Range Doppler (RD) map and satellite map. According to our survey results, this is the first time that satellite maps have been integrated into the field of radar target detection. The method realizes the sample matching between radar and satellite map through the target spatial position detected by radar, and simplifies the radar target detection task to a classification problem through deep learning. The training of a neural network model requires massive datasets with reliable labels. Due to the particularity of radar target detection tasks, real radar data is not yet widely available. Especially for distant targets, it is very difficult to accurately label radar data. To address the issue of precise annotation, this research paper introduces a labeling approach that enables the acquisition of a trustworthy, frame-by-frame labeled echo dataset. This paper also carries out rigorous comparative experiments with the other advanced method. The outcomes demonstrate a significant enhancement in the performance of our detection method. The dataset used in the experiment is obtained by the multi-pulse radar independently designed by our laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郭剑勇完成签到,获得积分10
1秒前
cannon8发布了新的文献求助10
1秒前
认真搞科研啦完成签到,获得积分10
2秒前
Cindy发布了新的文献求助10
6秒前
冬瓜熊完成签到,获得积分10
9秒前
酆不二完成签到,获得积分10
11秒前
龚嫦君完成签到,获得积分10
12秒前
Marvi完成签到,获得积分10
13秒前
15秒前
ZhangR完成签到,获得积分10
16秒前
Cindy完成签到,获得积分10
17秒前
vivian完成签到 ,获得积分10
17秒前
Jun发布了新的文献求助30
17秒前
18秒前
19秒前
麻黄汤中用桂枝完成签到 ,获得积分10
19秒前
lr完成签到,获得积分20
20秒前
Owen应助子车半烟采纳,获得10
21秒前
21秒前
三年半完成签到,获得积分10
23秒前
DDDuan完成签到 ,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得30
25秒前
Oliver应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得30
25秒前
Oliver应助科研通管家采纳,获得30
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
张大快乐完成签到 ,获得积分10
25秒前
26秒前
27秒前
干净的人达完成签到 ,获得积分10
27秒前
28秒前
玩笑完成签到 ,获得积分10
30秒前
ccalvintan发布了新的文献求助10
30秒前
Phoenix发布了新的文献求助10
31秒前
友好白风完成签到,获得积分20
33秒前
汤米bb完成签到,获得积分10
34秒前
陈柚子发布了新的文献求助30
34秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3078956
求助须知:如何正确求助?哪些是违规求助? 2731662
关于积分的说明 7519794
捐赠科研通 2380350
什么是DOI,文献DOI怎么找? 1262214
科研通“疑难数据库(出版商)”最低求助积分说明 611840
版权声明 597396