Seismic data reconstruction method using generative adversarial network based on moment reconstruction error constraint

计算机科学 力矩(物理) 插值(计算机图形学) 约束(计算机辅助设计) 算法 功能(生物学) 数据丢失 数学优化 数据挖掘 数学 人工智能 图像(数学) 物理 几何学 经典力学 计算机网络 进化生物学 生物
作者
Bin Liu,Xuguang Dong,Leiliang Xu,B. Qin
出处
期刊:Science Progress [SAGE Publishing]
卷期号:107 (2)
标识
DOI:10.1177/00368504231208497
摘要

The seismic data acquired are usually spatially undersampled due to the constraints of the field acquisition environment. However, the removal of multiple waves, offsets, and inversions requires high regularity and integrity of seismic data. Therefore, reasonable data reconstruction methods are usually applied to the missing data in the indoor processing stage to recover regular seismic data. The traditional reconstruction methods for seismic data reconstruction are generally based on some assumptions (e.g., assuming that the data satisfies linearity or sparsity, etc.) and have some limitations of use. To overcome the applicability problem of traditional seismic data reconstruction methods, this article proposes a generative adversarial network (GAN) seismic data reconstruction method based on moment reconstruction error constraints. The method can extract the deep features of the data nonlinearly without any assumptions. First, the error function in the GAN is improved, and the commonly used joint error function of adversarial loss plus L1/L2 amplitude reconstruction loss is improved to a new error function consisting of adversarial loss and moment reconstruction loss weighting. Then, an adversarial network data reconstruction generation method based on the moment reconstruction error constraint is given. Next, an experimental analysis of different types of data missing was carried out using theoretical model data, and the study method was analyzed by interpolation errors. Finally, actual seismic data is used to further validate the effect of the research method. The experimental results show that the improved algorithm performs superiorly in dealing with the data reconstruction problem. Compared with the error function of conventional GAN optimization, the reconstruction results of GAN based on the moment reconstruction error constraint have better amplitude preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直球科研发布了新的文献求助10
刚刚
刚刚
orixero应助yaochuan采纳,获得10
1秒前
yyybxqmz完成签到,获得积分10
1秒前
1秒前
1秒前
我先睡了完成签到,获得积分20
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
yxx应助科研通管家采纳,获得10
2秒前
呢咕啦嘶嘚咕啦完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
L3213036054发布了新的文献求助10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
dongjy应助科研通管家采纳,获得50
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
yar应助科研通管家采纳,获得10
2秒前
爱听歌代萱完成签到,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
大西瓜应助科研通管家采纳,获得30
2秒前
研友_LJeoa8完成签到,获得积分10
2秒前
2秒前
今后应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
骤世界完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600