Fluorescent elastomers are predominantly fabricated through doping fluorescent components or conjugating chromophores into polymer networks, which often involves detrimental effects on mechanical performance and also makes large-scale production difficult. Inspired by the heteroatom-rich microphase separation structures assisted by intensive hydrogen bonds in natural organisms, an ultra-robust fluorescent polyurethane elastomer is reported, which features a remarkable fracture strength of 87.2 MPa with an elongation of 1797%, exceptional toughness of 678.4 MJ m