分子印迹聚合物
萃取(化学)
检出限
甲基丙烯酸
吸附
色谱法
化学
固相萃取
选择性
聚合
聚合物
有机化学
催化作用
作者
Yu-Hong Tang,Tiantian Ma,Xu-Qin Ran,Yukun Yang,Hai‐Long Qian,Xiu‐Ping Yan
标识
DOI:10.1016/j.jhazmat.2024.134469
摘要
The scarcity of selective adsorbents for efficient extraction and removal of microcystins (MCs) from complex samples greatly limits the precise detection and effective control of MCs. Three-dimensional covalent organic frameworks (3D COFs), characterized by their large specific surface areas and highly ordered rigid structure, are promising candidates, but suffer from lack of specific recognition. Herein, we design to engineer molecularly imprinted cavities within 3D COFs via molecularly imprinted technology, creating a novel adsorbent with exceptional selectivity, kinetics and capacity for the efficient extraction and removal of MCs. As proof-of-concept, a new C=C bond-containing 3D COF, designated JNU-7, is designed and prepared for copolymerization with methacrylic acid, the pseudo template L-arginine and ethylene dimethacrylate to yield the JNU-7 based molecularly imprinted polymer (JNU-7-MIP). The JNU-7-MIP exhibits a great adsorption capacity (156 mg g-1) for L-arginine. Subsequently, the JNU-7-MIP based solid-phase extraction coupled with high performance liquid chromatography-mass spectrometry achieves low detection limit of 0.008 ng mL-1, wide linear range of 0.025-100 ng mL-1, high enrichment factor of 186, rapid extraction of 10 min, and good recoveries of 92.4%-106.5% for MC-LR. Moreover, the JNU-7-MIP can rapidly remove the MC-LR from 1 mg L-1 to levels (0.26-0.35 μg L-1) lower than the WHO recommended limit for drinking water (1 μg L-1). This work reveals the considerable potential of 3D COF based MIPs as promising adsorbents for the extraction and removal of contaminants in complex real samples. Global warming and man-made eutrophication have greatly raised the hazardous exposure levels of microcystins (MCs) in environment. The scarcity of selective adsorbents capable of efficiently extracting and removing MCs from complex samples severely limits the precise detection and effective control of MCs. Here, a new molecularly imprinted three-dimensional covalent organic framework was designed and prepared as novel adsorbent for the efficient extraction and remove of MCs in real environmental samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI