清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid gridded demographic data for China, 1979-2100

中国 气候学 地理 环境科学 气象学 地质学 考古
作者
Zhao Liu,Si Gao,Yidan Chen,Wenjia Cai
出处
期刊:CERN European Organization for Nuclear Research - Zenodo 被引量:1
标识
DOI:10.5281/zenodo.4554571
摘要

This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution. The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data). The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data. This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data). Method - demographic fractions by age and gender in 1979-2020 Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China. To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as: \(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\) Where: - \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020. - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census. - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census. Method - demographic totals by age and gender in 1979-2020 The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020. Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020. Method - demographic totals and fractions by age and gender in 2010-2100 The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell. This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender. Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods. Disclaimer This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emperor完成签到 ,获得积分0
40秒前
oscar完成签到,获得积分10
50秒前
cy0824完成签到 ,获得积分10
1分钟前
人类繁殖学完成签到 ,获得积分10
1分钟前
1分钟前
无私曼卉发布了新的文献求助10
2分钟前
Ann发布了新的文献求助10
2分钟前
ding应助qiqi1111采纳,获得10
2分钟前
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
内向映天完成签到 ,获得积分10
2分钟前
qiqi1111发布了新的文献求助10
3分钟前
3分钟前
Ann发布了新的文献求助10
3分钟前
Ann完成签到,获得积分10
3分钟前
山花浪漫完成签到 ,获得积分10
3分钟前
研友_n2JMKn完成签到 ,获得积分10
4分钟前
TOUHOUU完成签到 ,获得积分10
4分钟前
科研狗完成签到 ,获得积分10
4分钟前
三人水明完成签到 ,获得积分10
5分钟前
asdfqaz完成签到 ,获得积分10
5分钟前
橘子海完成签到 ,获得积分10
6分钟前
CherylZhao完成签到,获得积分10
6分钟前
香蕉觅云应助qiqi1111采纳,获得10
6分钟前
Milesgao完成签到,获得积分10
6分钟前
教授完成签到 ,获得积分10
6分钟前
LUMO完成签到 ,获得积分10
6分钟前
qiqi1111发布了新的文献求助10
6分钟前
方白秋完成签到,获得积分10
7分钟前
8分钟前
凡笙发布了新的文献求助10
8分钟前
tian发布了新的文献求助10
8分钟前
李健的粉丝团团长应助NaCl采纳,获得10
8分钟前
风信子deon01完成签到,获得积分10
8分钟前
科研通AI5应助凡笙采纳,获得10
8分钟前
科研通AI5应助tian采纳,获得10
8分钟前
xiaozou55完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
Miranda发布了新的文献求助30
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736655
求助须知:如何正确求助?哪些是违规求助? 3280645
关于积分的说明 10020153
捐赠科研通 2997322
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656