Hybrid gridded demographic data for China, 1979-2100

中国 气候学 地理 环境科学 气象学 地质学 考古
作者
Zhao Liu,Si Gao,Yidan Chen,Wenjia Cai
出处
期刊:CERN European Organization for Nuclear Research - Zenodo 被引量:1
标识
DOI:10.5281/zenodo.4554571
摘要

This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution. The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data). The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data. This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data). Method - demographic fractions by age and gender in 1979-2020 Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China. To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as: \(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\) Where: - \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020. - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census. - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census. Method - demographic totals by age and gender in 1979-2020 The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020. Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020. Method - demographic totals and fractions by age and gender in 2010-2100 The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell. This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender. Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods. Disclaimer This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hou完成签到,获得积分10
刚刚
俗签发布了新的文献求助10
刚刚
王女士完成签到,获得积分20
刚刚
1秒前
周哥发布了新的文献求助10
1秒前
Hello应助哎嘿采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
yana发布了新的文献求助20
3秒前
辜越涛发布了新的文献求助10
3秒前
肥肥发布了新的文献求助10
4秒前
光电效应完成签到,获得积分10
4秒前
才下眉头发布了新的文献求助10
4秒前
天天快乐应助李卓航采纳,获得10
4秒前
斯文静竹完成签到,获得积分10
5秒前
5秒前
5秒前
hlf发布了新的文献求助10
5秒前
深情安青应助悲凉的尔蓝采纳,获得10
5秒前
源缘完成签到 ,获得积分10
5秒前
luo发布了新的文献求助10
5秒前
大卫发布了新的文献求助10
6秒前
6秒前
彩色的凌旋完成签到,获得积分10
6秒前
7秒前
斯文败类应助水篇采纳,获得10
7秒前
ANHYPNIA完成签到,获得积分10
7秒前
7秒前
夏木子发布了新的文献求助10
8秒前
我是老大应助丙烯酸树脂采纳,获得30
9秒前
10秒前
优雅的化蛹完成签到,获得积分10
10秒前
陈阳发布了新的文献求助10
10秒前
孤独的一鸣应助Chambray采纳,获得10
10秒前
wodel发布了新的文献求助10
11秒前
raida发布了新的文献求助10
11秒前
12秒前
单薄店员发布了新的文献求助20
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059