化学
阳离子聚合
链式转移
加合物
氢化物
聚合
反应性(心理学)
烷基
烯烃纤维
立体化学
高分子化学
金属
自由基聚合
有机化学
催化作用
医学
替代医学
病理
聚合物
作者
Leonardo Tensi,Francesca Moretti,Alessandra Amendola,Robert D. J. Froese,Alceo Macchioni,Roger L. Kuhlman,David Pearson,Cristiano Zuccaccia
标识
DOI:10.1021/acs.inorgchem.4c00476
摘要
Cationic cyclometalated hafnocenes [CpPrCpCH2CH2CH2Hf][B(C6F5)4] (4Pr) and [CpiBuCpCH2CH(Me)CH2Hf][B(C6F5)4] (4aiBu and 4biBu) were synthesized from the corresponding [(CpPr)2HfMe][B(C6F5)4] (1Pr) and [(CpiBu)2HfMe][B(C6F5)4] (1iBu) complexes via C–H activation. 4aiBu, 4biBu, and 4Pr, mimicking a propagating M-polymeryl species (M = transition metal) with or without a β-methyl branch on the metalated chains, serve to investigate whether and how the nature of the last inserted olefin molecules changes the structure, stability, and reactivity of the corresponding heterobimetallic complexes, formed in the presence of aluminum- or zinc-alkyl chain transfer agents (CTAs), which are considered relevant intermediates in coordinative chain transfer polymerization (CCTP) and chain shuttling polymerization (CSP) technologies. NMR and DFT data indicate no major structural difference between the resulting heterobridged complexes, all characterized by the presence of multiple α-agostic interactions. On the contrary, thermodynamic and kinetic investigations, concerning the reversible formation and breaking of heterobimetallic adducts, demonstrate that isomer 4aiBu, in which the β-Me is oriented away from the reactive coordination site on Hf, but not 4biBu, having the β-Me pointing in the opposite direction, is capable of reacting with CTAs. Quantification of kinetic rate constants highlights that the formation process is rate limiting and that the nature of the last inserted α-olefin unit modulates transalkylation kinetics. The reaction of 4aiBu, 4biBu, and 4Pr with diisobutylaluminum hydride (DiBAlH) allows the interception and characterization of new heterobinuclear and heterotrinuclear species, featuring both hydride and alkyl bridging moieties, which represent structural models of elusive intermediates in CCTP and CSP processes, capturing the instant when an alkyl chain has just transferred from a transition metal to a main group metal, while the two metals remain engaged in a single heterobimetallic intermediate.
科研通智能强力驱动
Strongly Powered by AbleSci AI