Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics

胶质瘤 3D生物打印 肿瘤微环境 抗血管生成治疗 计算机科学 癌症研究 血管生成 计算生物学 机器学习 医学 生物 肿瘤细胞 生物医学工程 组织工程
作者
Min Tang,Shan Jiang,Xiaoming Huang,Chunxia Ji,Yexin Gu,Ying Qi,Yi Xiang,Emmie Yao,Nancy R. Zhang,Emma Berman,Di Yu,Yunjia Qu,Longwei Liu,David B. Berry,Yao Yu
出处
期刊:Cell discovery [Springer Nature]
卷期号:10 (1) 被引量:5
标识
DOI:10.1038/s41421-024-00650-7
摘要

Abstract Glioma, with its heterogeneous microenvironments and genetic subtypes, presents substantial challenges for treatment prediction and development. We integrated 3D bioprinting and multi-algorithm machine learning as a novel approach to enhance the assessment and understanding of glioma treatment responses and microenvironment characteristics. The bioprinted patient-derived glioma tissues successfully recapitulated molecular properties and drug responses of native tumors. We then developed GlioML, a machine learning workflow incorporating nine distinct algorithms and a weighted ensemble model that generated robust gene expression-based predictors, each reflecting the diverse action mechanisms of various compounds and drugs. The ensemble model superseded the performance of all individual algorithms across diverse in vitro systems, including sphere cultures, complex 3D bioprinted multicellular models, and 3D patient-derived tissues. By integrating bioprinting, the evaluative scope of the treatment expanded to T cell-related therapy and anti-angiogenesis targeted therapy. We identified promising compounds and drugs for glioma treatment and revealed distinct immunosuppressive or angiogenic myeloid-infiltrated tumor microenvironments. These insights pave the way for enhanced therapeutic development for glioma and potentially for other cancers, highlighting the broad application potential of this integrative and translational approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白发布了新的文献求助100
刚刚
peanut发布了新的文献求助30
1秒前
脑洞疼应助苦哈哈采纳,获得10
4秒前
Kayla完成签到,获得积分10
4秒前
栗子发布了新的文献求助10
6秒前
无辜梨愁完成签到 ,获得积分10
6秒前
22发布了新的文献求助10
8秒前
D1完成签到,获得积分10
10秒前
肥陈完成签到,获得积分10
12秒前
wu8577举报沉默是金求助涉嫌违规
13秒前
领导范儿应助翻羽采纳,获得10
14秒前
14秒前
15秒前
16秒前
椰青冰萃发布了新的文献求助30
18秒前
对对碰关注了科研通微信公众号
20秒前
21秒前
情怀应助栗子采纳,获得30
22秒前
研友_ndka5L发布了新的文献求助10
22秒前
22秒前
曦之南。发布了新的文献求助10
25秒前
25秒前
香蕉觅云应助MeiyanZou采纳,获得10
26秒前
猪哥发布了新的文献求助20
27秒前
腼腆的恶天完成签到,获得积分10
27秒前
28秒前
28秒前
YC完成签到,获得积分20
28秒前
魏冉发布了新的文献求助10
29秒前
29秒前
Owen应助qhjqljqd采纳,获得10
31秒前
31秒前
研友_ndka5L完成签到,获得积分20
31秒前
32秒前
33秒前
34秒前
34秒前
椰青冰萃完成签到,获得积分10
35秒前
35秒前
飞翔的蒲公英完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152