Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics

胶质瘤 3D生物打印 肿瘤微环境 抗血管生成治疗 计算机科学 癌症研究 血管生成 计算生物学 机器学习 医学 生物 肿瘤细胞 生物医学工程 组织工程
作者
Min Tang,Shan Jiang,Xiaoming Huang,Chunxia Ji,Yexin Gu,Ying Qi,Yi Xiang,Emmie Yao,Nancy R. Zhang,Emma Berman,Di Yu,Yunjia Qu,Longwei Liu,David B. Berry,Yao Yu
出处
期刊:Cell discovery [Springer Nature]
卷期号:10 (1) 被引量:5
标识
DOI:10.1038/s41421-024-00650-7
摘要

Abstract Glioma, with its heterogeneous microenvironments and genetic subtypes, presents substantial challenges for treatment prediction and development. We integrated 3D bioprinting and multi-algorithm machine learning as a novel approach to enhance the assessment and understanding of glioma treatment responses and microenvironment characteristics. The bioprinted patient-derived glioma tissues successfully recapitulated molecular properties and drug responses of native tumors. We then developed GlioML, a machine learning workflow incorporating nine distinct algorithms and a weighted ensemble model that generated robust gene expression-based predictors, each reflecting the diverse action mechanisms of various compounds and drugs. The ensemble model superseded the performance of all individual algorithms across diverse in vitro systems, including sphere cultures, complex 3D bioprinted multicellular models, and 3D patient-derived tissues. By integrating bioprinting, the evaluative scope of the treatment expanded to T cell-related therapy and anti-angiogenesis targeted therapy. We identified promising compounds and drugs for glioma treatment and revealed distinct immunosuppressive or angiogenic myeloid-infiltrated tumor microenvironments. These insights pave the way for enhanced therapeutic development for glioma and potentially for other cancers, highlighting the broad application potential of this integrative and translational approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hziyu发布了新的文献求助10
1秒前
1秒前
野性的南蕾完成签到,获得积分10
1秒前
毛毛哦啊发布了新的文献求助10
1秒前
zzzzzk发布了新的文献求助10
1秒前
1秒前
lalala发布了新的文献求助10
2秒前
三里墩头应助oldlee采纳,获得20
2秒前
2秒前
iNk应助西安小小朱采纳,获得10
2秒前
CodeCraft应助西安小小朱采纳,获得10
2秒前
无花果应助爱学习的小迟采纳,获得10
3秒前
哭泣的映寒完成签到 ,获得积分10
3秒前
xls完成签到,获得积分10
3秒前
3秒前
故意的傲玉应助圈圈采纳,获得10
3秒前
4秒前
522完成签到,获得积分10
4秒前
4秒前
kbj发布了新的文献求助10
4秒前
5秒前
老西瓜发布了新的文献求助10
5秒前
人各有痣完成签到,获得积分10
5秒前
后知后觉发布了新的文献求助10
5秒前
xiaoxiao发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
英姑应助哈哈呀采纳,获得10
7秒前
7秒前
hurry完成签到,获得积分10
7秒前
Hungrylunch应助陈玉婷采纳,获得20
7秒前
领导范儿应助hu970采纳,获得10
8秒前
new_vision发布了新的文献求助10
8秒前
拼搏翠桃完成签到,获得积分10
9秒前
糖糖科研顺利呀完成签到 ,获得积分10
9秒前
9秒前
阿秋完成签到,获得积分10
9秒前
Pangsj发布了新的文献求助10
10秒前
hhh发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672