Efficient Online Stream Clustering Based on Fast Peeling of Boundary Micro-Cluster

聚类分析 数据流聚类 计算机科学 数据库扫描 数据流挖掘 数据挖掘 CURE数据聚类算法 数据流 树冠聚类算法 相关聚类 概念漂移 高维数据聚类 确定数据集中的群集数 人工智能 电信
作者
Jiarui Sun,Mingjing Du,Chen Sun,Yongquan Dong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3382033
摘要

A growing number of applications generate streaming data, making data stream mining a popular research topic. Classification-based streaming algorithms require pre-training on labeled data. Manually labeling a large number of samples in the data stream is impractical and cost-prohibitive. Stream clustering algorithms rely on unsupervised learning. They have been widely studied for their ability to effectively analyze high-speed data streams without prior knowledge. Stream clustering plays a key role in data stream mining. Currently, most data stream clustering algorithms adopt the online-offline framework. In the online stage, micro-clusters are maintained, and in the offline stage, they are clustered using an algorithm similar to density-based spatial clustering of applications with noise (DBSCAN). When data streams have clusters with varying densities and ambiguous boundaries, traditional data stream clustering algorithms may be less effective. To overcome the above limitations, this article proposes a fully online stream clustering algorithm called fast boundary peeling stream clustering (FBPStream). First, FBPStream defines a decay-based kernel density estimation (KDE). It can discover clusters with varying densities and identify the evolving trend of streams well. Then, FBPStream implements an efficient boundary micro-cluster peeling technique to identify the potential core micro-clusters. Finally, FBPStream employs a parallel clustering strategy to effectively cluster core and boundary micro-clusters. The proposed algorithm is compared with ten popular algorithms on 15 data streams. Experimental results show that FBPStream is competitive with the other ten popular algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不爱池鱼应助kkjay采纳,获得10
1秒前
1秒前
junjie完成签到,获得积分10
1秒前
lzp应助asdadadad采纳,获得10
2秒前
似宁发布了新的文献求助10
2秒前
bailing128完成签到,获得积分10
2秒前
Ava应助au采纳,获得10
2秒前
王地黄发布了新的文献求助10
3秒前
南北完成签到,获得积分10
3秒前
曹kn发布了新的文献求助10
3秒前
齐平露发布了新的文献求助10
4秒前
有点怪完成签到,获得积分10
4秒前
现代的幻柏应助文件撤销了驳回
5秒前
追寻宛海完成签到 ,获得积分20
7秒前
lz完成签到,获得积分20
7秒前
英俊的铭应助pwj采纳,获得10
7秒前
8秒前
Hello应助阔达的太阳采纳,获得10
8秒前
9秒前
Ava应助Suraim采纳,获得30
9秒前
小马甲应助深渊与海采纳,获得10
9秒前
10秒前
11秒前
11秒前
Accepted应助陈椅子的求学采纳,获得10
12秒前
慕青应助罗元正采纳,获得10
12秒前
11完成签到,获得积分10
12秒前
asdadadad发布了新的文献求助10
12秒前
zxw完成签到,获得积分10
12秒前
13秒前
14秒前
pyt发布了新的文献求助10
14秒前
ikun0000发布了新的文献求助10
14秒前
14秒前
14秒前
夏季霸吹发布了新的文献求助10
15秒前
lz发布了新的文献求助10
15秒前
幸福大碗完成签到,获得积分10
15秒前
慕青应助勤恳水风采纳,获得10
15秒前
曹kn完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443