Efficient Online Stream Clustering Based on Fast Peeling of Boundary Micro-Cluster

聚类分析 数据流聚类 计算机科学 数据库扫描 数据流挖掘 数据挖掘 CURE数据聚类算法 数据流 树冠聚类算法 相关聚类 概念漂移 高维数据聚类 确定数据集中的群集数 人工智能 电信
作者
Jiarui Sun,Mingjing Du,Chen Sun,Yongquan Dong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3382033
摘要

A growing number of applications generate streaming data, making data stream mining a popular research topic. Classification-based streaming algorithms require pre-training on labeled data. Manually labeling a large number of samples in the data stream is impractical and cost-prohibitive. Stream clustering algorithms rely on unsupervised learning. They have been widely studied for their ability to effectively analyze high-speed data streams without prior knowledge. Stream clustering plays a key role in data stream mining. Currently, most data stream clustering algorithms adopt the online-offline framework. In the online stage, micro-clusters are maintained, and in the offline stage, they are clustered using an algorithm similar to density-based spatial clustering of applications with noise (DBSCAN). When data streams have clusters with varying densities and ambiguous boundaries, traditional data stream clustering algorithms may be less effective. To overcome the above limitations, this article proposes a fully online stream clustering algorithm called fast boundary peeling stream clustering (FBPStream). First, FBPStream defines a decay-based kernel density estimation (KDE). It can discover clusters with varying densities and identify the evolving trend of streams well. Then, FBPStream implements an efficient boundary micro-cluster peeling technique to identify the potential core micro-clusters. Finally, FBPStream employs a parallel clustering strategy to effectively cluster core and boundary micro-clusters. The proposed algorithm is compared with ten popular algorithms on 15 data streams. Experimental results show that FBPStream is competitive with the other ten popular algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘玉梅完成签到,获得积分10
2秒前
科研通AI2S应助sqz采纳,获得10
2秒前
2秒前
Ava应助AnnChen采纳,获得10
3秒前
nicole发布了新的文献求助10
4秒前
晨熙完成签到,获得积分10
4秒前
Hello应助清爽蹇采纳,获得10
4秒前
lllll完成签到,获得积分10
6秒前
7秒前
快乐马发布了新的文献求助10
8秒前
YORLAN完成签到 ,获得积分10
9秒前
11秒前
wying发布了新的文献求助30
11秒前
光亮远航完成签到 ,获得积分10
12秒前
14秒前
Olivia发布了新的文献求助20
16秒前
AnnChen发布了新的文献求助10
16秒前
16秒前
超级灰狼完成签到 ,获得积分10
16秒前
彭于晏应助朵朵采纳,获得30
19秒前
20秒前
传统的钧完成签到,获得积分10
22秒前
Hello应助wying采纳,获得30
23秒前
佳佳应助好久不见采纳,获得10
23秒前
24秒前
24秒前
苏苏苏发布了新的文献求助10
25秒前
25秒前
天宝完成签到,获得积分10
26秒前
医学的记忆完成签到,获得积分20
27秒前
xr发布了新的文献求助10
28秒前
大方的菠萝完成签到 ,获得积分10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
29秒前
夕诙应助科研通管家采纳,获得20
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343