亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridging the gap between crop breeding and GeoAI: Soybean yield prediction from multispectral UAV images with transfer learning

多光谱图像 桥接(联网) 学习迁移 人工智能 产量(工程) 作物 计算机科学 农学 生物 材料科学 计算机网络 冶金
作者
Juan Skobalski,Vasit Sagan,Haireti Alifu,Omar Al Akkad,Felipe A. Lopes,Fernando Grignola
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 260-281 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.03.015
摘要

Despite significant progress has been made towards crop yield prediction with remote sensing, there exist knowledge gaps on (1) the impacts of temporal resolution of imaging frequencies on yield prediction, (2) transferability of the models among different genotypes and test sites, and (3) translation of these research developments to crop breeding that benefit farmers. Existing research predominantly provides an on-site perspective, frequently missing the complexities of real-world applications. The objectives of this paper are to investigate the transferability and generalization capabilities of yield prediction models for crop breeding across test sites located in North and South Americas. Toward that goal, we tested different machine learning techniques including Random Forest Regressor (RF), Gradient Boosting Regression (GB), and Deep Neural Networks (DNN) for soybean yield prediction with experiments conducted in different climate and growth conditions. A novel transfer learning approach was proposed for genotype selection and categorizing soybean yield for screening high-yield varieties. Furthermore, we studied the effect of temporal resolution on yield prediction, focusing on the critical development stages and optimal aerial survey frequencies for precise yield prediction using large 31,404 sample data. Results demonstrated that the combined dataset of Argentina and United States representing different climate regimes provided the highest performance with an R2 of 0.76 using RF and GB algorithms. The classification approach was proven to be most useful for crop breeding as demonstrated by accurately identifying the high-yielding genotypes. Increasing temporal sampling of key phenological stages significantly improved yield prediction. Although transfer learning yielded promising outcomes across trials within Argentina the efficacy of transferring models from Argentina to the United States was limited, attributed to significant seasonal and climate variations. This study pioneered the use of transfer learning for model adaptability in real-world breeding scenarios, training and transferring models within the South and North Americas, providing actionable insights and strategies for the breeding community, aiming to facilitate improved decision-making for agricultural productivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
27秒前
无极微光应助科研通管家采纳,获得20
27秒前
任性云朵完成签到 ,获得积分10
42秒前
大模型应助jing采纳,获得10
1分钟前
1分钟前
奋斗一刀完成签到,获得积分20
1分钟前
1分钟前
1分钟前
jing发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
火星上的幻梦完成签到,获得积分10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
一一完成签到,获得积分10
2分钟前
jing完成签到,获得积分20
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
诚心雪晴完成签到 ,获得积分10
2分钟前
Owen应助Re采纳,获得10
2分钟前
2分钟前
Re发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
su完成签到 ,获得积分10
3分钟前
阿里完成签到,获得积分10
4分钟前
阿里发布了新的文献求助30
4分钟前
4分钟前
4分钟前
pengpengyin发布了新的文献求助10
4分钟前
咔敏完成签到,获得积分10
5分钟前
咔敏发布了新的文献求助10
5分钟前
pengpengyin完成签到,获得积分10
5分钟前
5分钟前
小二郎应助七安得安采纳,获得30
6分钟前
平常囧完成签到,获得积分10
6分钟前
李健应助跳跃的小之采纳,获得10
6分钟前
6分钟前
6分钟前
火速阿百川完成签到,获得积分10
6分钟前
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064