Bridging the gap between crop breeding and GeoAI: Soybean yield prediction from multispectral UAV images with transfer learning

多光谱图像 桥接(联网) 学习迁移 人工智能 产量(工程) 作物 计算机科学 农学 生物 材料科学 计算机网络 冶金
作者
Juan Skobalski,Vasit Sagan,Haireti Alifu,Omar Al Akkad,Felipe A. Lopes,Fernando Grignola
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 260-281 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.03.015
摘要

Despite significant progress has been made towards crop yield prediction with remote sensing, there exist knowledge gaps on (1) the impacts of temporal resolution of imaging frequencies on yield prediction, (2) transferability of the models among different genotypes and test sites, and (3) translation of these research developments to crop breeding that benefit farmers. Existing research predominantly provides an on-site perspective, frequently missing the complexities of real-world applications. The objectives of this paper are to investigate the transferability and generalization capabilities of yield prediction models for crop breeding across test sites located in North and South Americas. Toward that goal, we tested different machine learning techniques including Random Forest Regressor (RF), Gradient Boosting Regression (GB), and Deep Neural Networks (DNN) for soybean yield prediction with experiments conducted in different climate and growth conditions. A novel transfer learning approach was proposed for genotype selection and categorizing soybean yield for screening high-yield varieties. Furthermore, we studied the effect of temporal resolution on yield prediction, focusing on the critical development stages and optimal aerial survey frequencies for precise yield prediction using large 31,404 sample data. Results demonstrated that the combined dataset of Argentina and United States representing different climate regimes provided the highest performance with an R2 of 0.76 using RF and GB algorithms. The classification approach was proven to be most useful for crop breeding as demonstrated by accurately identifying the high-yielding genotypes. Increasing temporal sampling of key phenological stages significantly improved yield prediction. Although transfer learning yielded promising outcomes across trials within Argentina the efficacy of transferring models from Argentina to the United States was limited, attributed to significant seasonal and climate variations. This study pioneered the use of transfer learning for model adaptability in real-world breeding scenarios, training and transferring models within the South and North Americas, providing actionable insights and strategies for the breeding community, aiming to facilitate improved decision-making for agricultural productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助liu采纳,获得10
1秒前
1秒前
cherish完成签到,获得积分10
2秒前
2秒前
在水一方应助pincoudegushi采纳,获得10
2秒前
2秒前
刘新完成签到,获得积分10
2秒前
糟糕的铁锤应助Beton_X采纳,获得50
2秒前
2秒前
2秒前
结实的秋凌完成签到,获得积分10
3秒前
4秒前
敬老院N号应助kathy采纳,获得30
4秒前
陈住气发布了新的文献求助10
4秒前
5秒前
希望天下0贩的0应助Momo采纳,获得10
5秒前
absb发布了新的文献求助10
6秒前
Forez发布了新的文献求助10
6秒前
zhuzhu发布了新的文献求助10
6秒前
7秒前
慕青应助不安的秋白采纳,获得10
7秒前
iii发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
称心寒松发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
yehaidadao完成签到,获得积分10
8秒前
欢呼妙菱发布了新的文献求助10
10秒前
10秒前
MizzZeus完成签到,获得积分10
10秒前
10秒前
善学以致用应助up采纳,获得10
10秒前
11秒前
ll发布了新的文献求助10
11秒前
星辰大海应助蚕宝宝小子采纳,获得10
12秒前
雪白的面包完成签到 ,获得积分10
13秒前
类囊体薄膜完成签到,获得积分10
13秒前
absb完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650