Bridging the gap between crop breeding and GeoAI: Soybean yield prediction from multispectral UAV images with transfer learning

多光谱图像 桥接(联网) 学习迁移 人工智能 产量(工程) 作物 计算机科学 农学 生物 材料科学 计算机网络 冶金
作者
Juan Skobalski,Vasit Sagan,Haireti Alifu,Omar Al Akkad,Felipe A. Lopes,Fernando Grignola
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 260-281 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.03.015
摘要

Despite significant progress has been made towards crop yield prediction with remote sensing, there exist knowledge gaps on (1) the impacts of temporal resolution of imaging frequencies on yield prediction, (2) transferability of the models among different genotypes and test sites, and (3) translation of these research developments to crop breeding that benefit farmers. Existing research predominantly provides an on-site perspective, frequently missing the complexities of real-world applications. The objectives of this paper are to investigate the transferability and generalization capabilities of yield prediction models for crop breeding across test sites located in North and South Americas. Toward that goal, we tested different machine learning techniques including Random Forest Regressor (RF), Gradient Boosting Regression (GB), and Deep Neural Networks (DNN) for soybean yield prediction with experiments conducted in different climate and growth conditions. A novel transfer learning approach was proposed for genotype selection and categorizing soybean yield for screening high-yield varieties. Furthermore, we studied the effect of temporal resolution on yield prediction, focusing on the critical development stages and optimal aerial survey frequencies for precise yield prediction using large 31,404 sample data. Results demonstrated that the combined dataset of Argentina and United States representing different climate regimes provided the highest performance with an R2 of 0.76 using RF and GB algorithms. The classification approach was proven to be most useful for crop breeding as demonstrated by accurately identifying the high-yielding genotypes. Increasing temporal sampling of key phenological stages significantly improved yield prediction. Although transfer learning yielded promising outcomes across trials within Argentina the efficacy of transferring models from Argentina to the United States was limited, attributed to significant seasonal and climate variations. This study pioneered the use of transfer learning for model adaptability in real-world breeding scenarios, training and transferring models within the South and North Americas, providing actionable insights and strategies for the breeding community, aiming to facilitate improved decision-making for agricultural productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无解发布了新的文献求助30
1秒前
1秒前
1秒前
Hellolyj完成签到 ,获得积分10
1秒前
开放的沧海完成签到,获得积分10
2秒前
冷静雅香完成签到 ,获得积分10
2秒前
活泼一斩关注了科研通微信公众号
2秒前
asd00发布了新的文献求助10
4秒前
4秒前
xiao应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
努力努力123完成签到,获得积分10
7秒前
橙木木发布了新的文献求助10
8秒前
likenoodles完成签到 ,获得积分10
10秒前
14秒前
Billy发布了新的文献求助200
15秒前
15秒前
鹿雅彤发布了新的文献求助10
15秒前
jixuchance完成签到,获得积分10
17秒前
18秒前
LGH发布了新的文献求助200
18秒前
罗亚亚发布了新的文献求助10
19秒前
樱桃猴子应助lwq采纳,获得10
19秒前
丽莉发布了新的文献求助10
19秒前
19秒前
自然之水完成签到,获得积分10
20秒前
无奈敏发布了新的文献求助10
21秒前
活泼一斩发布了新的文献求助10
22秒前
瓦罐完成签到 ,获得积分10
24秒前
彩色谷蕊发布了新的文献求助10
24秒前
霍山柳发布了新的文献求助10
25秒前
28秒前
klb13应助体贴的代真采纳,获得100
28秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578