亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Qibo: A Large Language Model for Traditional Chinese Medicine

语言学 计算机科学 自然语言处理 传统医学 医学 哲学
作者
Heyi Zhang,Xin Wang,Zhaopeng Meng,Yongzhe Jia,Dawei Xu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.16056
摘要

In the field of Artificial Intelligence, Large Language Models (LLMs) have demonstrated significant advances in user intent understanding and response in a number of specialized domains, including medicine, law, and finance. However, in the unique domain of traditional Chinese medicine (TCM), the performance enhancement of LLMs is challenged by the essential differences between its theories and modern medicine, as well as the lack of specialized corpus resources. In this paper, we aim to construct and organize a professional corpus in the field of TCM, to endow the large model with professional knowledge that is characteristic of TCM theory, and to successfully develop the Qibo model based on LLaMA, which is the first LLM in the field of TCM to undergo a complete training process from pre-training to Supervised Fine-Tuning (SFT). Furthermore, we develop the Qibo-benchmark, a specialized tool for evaluating the performance of LLMs, which is a specialized tool for evaluating the performance of LLMs in the TCM domain. This tool will provide an important basis for quantifying and comparing the understanding and application capabilities of different models in the field of traditional Chinese medicine, and provide guidance for future research directions and practical applications of intelligent assistants for traditional Chinese medicine. Finally, we conducted sufficient experiments to prove that Qibo has good performance in the field of traditional Chinese medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你的背包完成签到,获得积分10
1秒前
酷酷一笑完成签到,获得积分10
3秒前
4秒前
5秒前
9秒前
10秒前
15秒前
华仔应助wf采纳,获得10
15秒前
下文献的蜉蝣完成签到 ,获得积分10
16秒前
范丞丞完成签到 ,获得积分10
28秒前
123完成签到,获得积分10
30秒前
32秒前
37秒前
鲤鱼不言完成签到,获得积分10
39秒前
Zoe完成签到,获得积分10
40秒前
42秒前
Lucas应助科研通管家采纳,获得10
43秒前
ceeray23应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
ceeray23应助科研通管家采纳,获得10
44秒前
44秒前
大薯条完成签到 ,获得积分10
47秒前
48秒前
48秒前
天天好心覃完成签到 ,获得积分10
50秒前
52秒前
wf发布了新的文献求助10
52秒前
aaa发布了新的文献求助40
53秒前
57秒前
鲍文启完成签到 ,获得积分10
1分钟前
洒脱鲲发布了新的文献求助10
1分钟前
科研通AI2S应助万雨斌采纳,获得10
1分钟前
WPY发布了新的文献求助10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
东哥发布了新的文献求助10
1分钟前
丿夜幕灬降临丨完成签到,获得积分10
1分钟前
烊驼完成签到,获得积分10
1分钟前
轻松念蕾完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022875
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502731
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387