Deep Learning Model for Prediction of Bronchopulmonary Dysplasia in Preterm Infants Using Chest Radiographs

支气管肺发育不良 医学 射线照相术 深度学习 儿科 放射科 人工智能 计算机科学 胎龄 遗传学 生物 怀孕
作者
Hung-Chieh Chou,Yung‐Chieh Lin,Sun Yuan Hsieh,Hsin-Hung Chou,Cheng-Shih Lai,Bow Wang,Yi Shan Tsai
标识
DOI:10.1007/s10278-024-01050-9
摘要

Abstract Bronchopulmonary dysplasia (BPD) is common in preterm infants and may result in pulmonary vascular disease, compromising lung function. This study aimed to employ artificial intelligence (AI) techniques to help physicians accurately diagnose BPD in preterm infants in a timely and efficient manner. This retrospective study involves two datasets: a lung region segmentation dataset comprising 1491 chest radiographs of infants, and a BPD prediction dataset comprising 1021 chest radiographs of preterm infants. Transfer learning of a pre-trained machine learning model was employed for lung region segmentation and image fusion for BPD prediction to enhance the performance of the AI model. The lung segmentation model uses transfer learning to achieve a dice score of 0.960 for preterm infants with $$\le$$ 168 h postnatal age. The BPD prediction model exhibited superior diagnostic performance compared to that of experts and demonstrated consistent performance for chest radiographs obtained at $$\le$$ 24 h postnatal age, and those obtained at 25 to 168 h postnatal age. This study is the first to use deep learning on preterm chest radiographs for lung segmentation to develop a BPD prediction model with an early detection time of less than 24 h. Additionally, this study compared the model’s performance according to both NICHD and Jensen criteria for BPD. Results demonstrate that the AI model surpasses the diagnostic accuracy of experts in predicting lung development in preterm infants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llli发布了新的文献求助10
刚刚
ymz完成签到,获得积分10
刚刚
Conccuc发布了新的文献求助10
刚刚
迷路博完成签到,获得积分10
刚刚
Jasper应助33ovo采纳,获得10
刚刚
mmmmmyq完成签到,获得积分10
2秒前
咯咯咯咯发布了新的文献求助10
2秒前
shwang发布了新的文献求助10
2秒前
3秒前
qwhj完成签到,获得积分10
4秒前
Owen应助小波龙采纳,获得10
4秒前
5秒前
5秒前
6秒前
7秒前
你好发布了新的文献求助40
7秒前
9秒前
hbhbj应助刘慧鑫采纳,获得20
9秒前
aifeeling完成签到,获得积分10
9秒前
keeptg发布了新的文献求助10
10秒前
上官若男应助LiSiyi采纳,获得10
10秒前
10秒前
fyy完成签到,获得积分10
11秒前
11秒前
kiteWYL发布了新的文献求助10
12秒前
叁零发布了新的文献求助10
12秒前
在一完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
胖呆呆发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
我是老大应助MY9990采纳,获得10
16秒前
科研通AI6应助岛屿采纳,获得10
16秒前
777完成签到,获得积分10
16秒前
savica发布了新的文献求助10
17秒前
你一头牛牛牛牛完成签到,获得积分10
17秒前
浮游应助哈哈采纳,获得10
18秒前
华仔应助害羞的慕晴采纳,获得50
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085