Overlapping object detection with adaptive Gaussian sample division and asymmetric weighted loss

师(数学) 高斯分布 样品(材料) 统计 计算机科学 对象(语法) 数学 人工智能 模式识别(心理学) 算法 算术 物理 量子力学 热力学
作者
Yao Xue,Yawei Zhang,Yu-Xiao Liu,Xueming Qian
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111685-111685
标识
DOI:10.1016/j.knosys.2024.111685
摘要

Existing deep learning based detectors are mostly designed for scenes with sparsely distributed objects. However, in certain scenarios such as dense crowds, objects often overlap severely. The dense anchor arrangement in anchor-based detectors is not quite suitable for the overlapping object detection. Anchor-free detectors have the potential to achieve high-performance in overlapping object detection, but troubled by the extreme imbalance of positive and negative samples. To this end, we propose an anchor-free overlapping object detector. Our adaptive Gaussian sample division (AGSD) can effectively allocate positive and negative samples with clear semantics to overlapping objects. Secondly, asymmetric weighted loss (AW Loss) adapts to continuous positive and negative sample values, thereby improving the classification ability of the detector. Lastly, our global location distribution head (GLD head) can introduce the supervision of overlapping object distributions. To verify the effectiveness of our method, we construct a large-scale high-quality overlapping object detection dataset containing 6,173 images and 17,725 annotations. Compared with mainstream object detector, our method achieves the best performance of AP50 at 96.71%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gcr完成签到 ,获得积分10
刚刚
FelixFelicis发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
花川完成签到 ,获得积分10
3秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
fangyuan应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
一禅发布了新的文献求助10
6秒前
Ava应助weddcf采纳,获得10
6秒前
6秒前
qq完成签到,获得积分10
6秒前
Carrie完成签到,获得积分20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
情怀应助zjl666采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
无名应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
四夕发布了新的文献求助30
7秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
Aliothae发布了新的文献求助10
8秒前
FashionBoy应助田柾国采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712