Overlapping object detection with adaptive Gaussian sample division and asymmetric weighted loss

师(数学) 高斯分布 样品(材料) 统计 计算机科学 对象(语法) 数学 人工智能 模式识别(心理学) 算法 算术 物理 量子力学 热力学
作者
Yao Xue,Yawei Zhang,Yu-Xiao Liu,Xueming Qian
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111685-111685
标识
DOI:10.1016/j.knosys.2024.111685
摘要

Existing deep learning based detectors are mostly designed for scenes with sparsely distributed objects. However, in certain scenarios such as dense crowds, objects often overlap severely. The dense anchor arrangement in anchor-based detectors is not quite suitable for the overlapping object detection. Anchor-free detectors have the potential to achieve high-performance in overlapping object detection, but troubled by the extreme imbalance of positive and negative samples. To this end, we propose an anchor-free overlapping object detector. Our adaptive Gaussian sample division (AGSD) can effectively allocate positive and negative samples with clear semantics to overlapping objects. Secondly, asymmetric weighted loss (AW Loss) adapts to continuous positive and negative sample values, thereby improving the classification ability of the detector. Lastly, our global location distribution head (GLD head) can introduce the supervision of overlapping object distributions. To verify the effectiveness of our method, we construct a large-scale high-quality overlapping object detection dataset containing 6,173 images and 17,725 annotations. Compared with mainstream object detector, our method achieves the best performance of AP50 at 96.71%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉冰之完成签到,获得积分10
刚刚
刚刚
wanci应助暖冬22采纳,获得10
1秒前
天下无贼完成签到,获得积分10
1秒前
年轻丸子完成签到,获得积分10
1秒前
wjx完成签到 ,获得积分10
1秒前
wise111发布了新的文献求助10
1秒前
2秒前
cc6521发布了新的文献求助10
2秒前
马帅雅发布了新的文献求助10
2秒前
2秒前
小蘑菇应助magic采纳,获得10
2秒前
cheng123发布了新的文献求助10
2秒前
blueming发布了新的文献求助10
2秒前
2秒前
完美世界应助boge5633采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
柏林寒冬应助科研通管家采纳,获得10
3秒前
tutu完成签到,获得积分0
3秒前
烟花应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
guan完成签到,获得积分20
4秒前
liu7_77完成签到,获得积分10
4秒前
4秒前
5秒前
ww完成签到 ,获得积分10
5秒前
careS发布了新的文献求助10
5秒前
j7完成签到 ,获得积分10
5秒前
猫好好发布了新的文献求助10
6秒前
6秒前
222发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270592
求助须知:如何正确求助?哪些是违规求助? 4428746
关于积分的说明 13785589
捐赠科研通 4306594
什么是DOI,文献DOI怎么找? 2363149
邀请新用户注册赠送积分活动 1358858
关于科研通互助平台的介绍 1321740