Urban morphology clustering analysis to identify heat-prone neighbourhoods in cities

不透水面 城市形态 聚类分析 邻里(数学) 城市热岛 植被(病理学) 环境科学 建筑环境 地理 自然地理学 土木工程 城市规划 计算机科学 工程类 气象学 医学 数学分析 生态学 数学 病理 机器学习 生物
作者
Birgit Sützl,Dominik Strebel,Andreas Rubin,Jianxiu Wen,Jan Carmeliet
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:107: 105360-105360 被引量:12
标识
DOI:10.1016/j.scs.2024.105360
摘要

Exposure to heat is a major health concern to urban populations. Cities aim to reduce outdoor thermal stress by adapting the built environment, but the spatial heterogeneity within cities makes it difficult to establish universal mitigation strategies. We present a methodology that identifies the hottest neighbourhoods in a city and links them to underlying patterns in urban form and function, to derive heat mitigation measures for individual neighbourhoods according to their characteristics, mitigation potential, and average surface temperature. The method applies k-means clustering and is applicable to any city using available datasets on surface cover and building morphology, as well as globally available satellite measurements of surface temperatures. Here, we present a heat-mitigation analysis for the city of Zurich. The clustering differentiates seven neighbourhood types, including two types of residential areas, modern neighbourhoods with high-rise buildings, historical districts, and industrial zones. The hottest temperatures are in neighbourhoods with extensive impervious ground cover such as railway tracks and airport parking. Surface temperatures strongly correlate with impervious surface cover and vegetation cover for all neighbourhoods, with building cover only for non-industrial built neighbourhoods, and with sky-view factor for all neighbourhoods except those with large vegetation cover. Historical, modern, and industrial neighbourhoods are particular heat-prone, and increasing vegetation for evaporative cooling is a suggested mitigation strategy for all. Modern and industrial areas could benefit from shading through increase of tree cover, while historical centres may adapt vertical greening as suitable heat mitigation strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助粗心的智慧采纳,获得10
刚刚
兵临城下zgb完成签到,获得积分10
刚刚
牛牛超人完成签到,获得积分10
1秒前
俺也一样完成签到,获得积分10
1秒前
初青酱完成签到,获得积分10
1秒前
饼饼发布了新的文献求助10
2秒前
ddk六发布了新的文献求助10
2秒前
上官若男应助panda采纳,获得10
2秒前
埃迪关注了科研通微信公众号
2秒前
2秒前
2秒前
3秒前
3秒前
weiliaier完成签到,获得积分10
3秒前
Jasper应助xinxinqi采纳,获得10
3秒前
浮游应助坚定惜梦采纳,获得10
3秒前
4秒前
动听千风完成签到,获得积分10
4秒前
务实孤丝完成签到 ,获得积分10
5秒前
jie酱拌面应助chem采纳,获得10
5秒前
KingYH完成签到,获得积分10
5秒前
6秒前
qiuxin完成签到,获得积分10
6秒前
坦率的可仁完成签到,获得积分10
7秒前
刘刘发布了新的文献求助10
7秒前
发顶刊完成签到,获得积分10
7秒前
晨曦发布了新的文献求助10
7秒前
领导范儿应助油炸小麻花采纳,获得10
7秒前
852应助栖木采纳,获得10
7秒前
鸣笛应助吕吕采纳,获得10
8秒前
天桂星完成签到,获得积分10
8秒前
天天快乐应助韶以山采纳,获得10
8秒前
果果发布了新的文献求助10
8秒前
8秒前
8秒前
要减肥念真完成签到,获得积分10
9秒前
那就来吧发布了新的文献求助10
9秒前
风中谷南完成签到,获得积分10
10秒前
10秒前
饼饼完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572826
求助须知:如何正确求助?哪些是违规求助? 3993399
关于积分的说明 12362256
捐赠科研通 3666519
什么是DOI,文献DOI怎么找? 2020846
邀请新用户注册赠送积分活动 1055055
科研通“疑难数据库(出版商)”最低求助积分说明 942470