Urban morphology clustering analysis to identify heat-prone neighbourhoods in cities

不透水面 城市形态 聚类分析 邻里(数学) 城市热岛 植被(病理学) 环境科学 建筑环境 地理 自然地理学 土木工程 城市规划 计算机科学 工程类 气象学 医学 数学分析 生态学 数学 病理 机器学习 生物
作者
Birgit Sützl,Dominik Strebel,Andreas Rubin,Jianxiu Wen,Jan Carmeliet
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:107: 105360-105360 被引量:22
标识
DOI:10.1016/j.scs.2024.105360
摘要

Exposure to heat is a major health concern to urban populations. Cities aim to reduce outdoor thermal stress by adapting the built environment, but the spatial heterogeneity within cities makes it difficult to establish universal mitigation strategies. We present a methodology that identifies the hottest neighbourhoods in a city and links them to underlying patterns in urban form and function, to derive heat mitigation measures for individual neighbourhoods according to their characteristics, mitigation potential, and average surface temperature. The method applies k-means clustering and is applicable to any city using available datasets on surface cover and building morphology, as well as globally available satellite measurements of surface temperatures. Here, we present a heat-mitigation analysis for the city of Zurich. The clustering differentiates seven neighbourhood types, including two types of residential areas, modern neighbourhoods with high-rise buildings, historical districts, and industrial zones. The hottest temperatures are in neighbourhoods with extensive impervious ground cover such as railway tracks and airport parking. Surface temperatures strongly correlate with impervious surface cover and vegetation cover for all neighbourhoods, with building cover only for non-industrial built neighbourhoods, and with sky-view factor for all neighbourhoods except those with large vegetation cover. Historical, modern, and industrial neighbourhoods are particular heat-prone, and increasing vegetation for evaporative cooling is a suggested mitigation strategy for all. Modern and industrial areas could benefit from shading through increase of tree cover, while historical centres may adapt vertical greening as suitable heat mitigation strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖可乐完成签到,获得积分10
刚刚
泡泡糖完成签到,获得积分10
1秒前
浮游应助风清扬采纳,获得30
1秒前
3秒前
3秒前
所所应助背后翠梅采纳,获得10
3秒前
zcl应助Tree_QD采纳,获得30
4秒前
5秒前
美丽电源应助owoow采纳,获得10
6秒前
乐乐应助STP顶峰相见采纳,获得10
6秒前
9秒前
Amy发布了新的文献求助10
10秒前
CHENJIRU发布了新的文献求助10
10秒前
11秒前
冰阔落完成签到 ,获得积分10
12秒前
12秒前
Emma发布了新的文献求助10
13秒前
Passskd发布了新的文献求助10
15秒前
科研通AI6应助13508104971采纳,获得10
15秒前
16秒前
华仔应助小王同学采纳,获得10
17秒前
Rainielove0215完成签到,获得积分0
18秒前
18秒前
Moon完成签到,获得积分10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
小马甲应助明月清风采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
英吉利25发布了新的文献求助10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
小熊猫应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
22秒前
ZiyuanLi完成签到 ,获得积分10
23秒前
爆米花应助Amy采纳,获得10
23秒前
kk发布了新的文献求助10
23秒前
28秒前
科研狗完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964