Investigating Collective Emotional Structures: Theoretical and Analytical Implications of the ‘Deep Story’ Concept

认识论 社会学 心理学 社会心理学 认知科学 哲学
作者
Maja Sawicka
出处
期刊:Cultural Sociology [SAGE]
卷期号:18 (2): 199-216 被引量:1
标识
DOI:10.1177/17499755241231014
摘要

Since Hochschild proposed the notion of a ‘deep story’ to address a collective emotional structure (particularly resentment) underpinning political attitudes and social divisions in the contemporary USA, this category has been widely embraced across social sciences to reflect upon links between sedimented emotions, motivations, actions and means of social mobilization. Simultaneously, however, criticism of this concept has been articulated which pointed out that Hochschild was inconsistent in her understanding of deep stories and the role this category performs in a sociological investigation. Acknowledging critical addresses presented so far, the article aims at the reconstruction of this concept as an analytical device which can be used to account for collective emotional dynamics accompanying prolonged social transformations. I propose that a deep story can be best understood as a social space in which emotions emerge through an interactional, collaborative process of storytelling. I draw, first, from social-psychological investigations into collective processes of meaning-making to analyse the interplay between the emergence of group-based cognitive categories and their affective implications. Second, I employ narrative theories to account for socio-psychological processes in which group-based, collectively generated cognitive and affective elements are integrated into actual lifeworlds and deployed in sense-making. Finally, I consider the insights pertaining to emotions collectively felt and practised to reflect upon the social dynamic of emotion-sharing. I argue that the notion of a ‘deep story’ is analytically useful only insofar it is embedded in clearly articulated theoretical assertions about cognitive and affective, collective and interpersonal, dynamics of meaning-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助忆之采纳,获得10
刚刚
2秒前
T1tmouse完成签到 ,获得积分20
2秒前
2秒前
cha236发布了新的文献求助10
3秒前
Ava应助Chen272采纳,获得10
3秒前
孤独师完成签到,获得积分10
3秒前
科研靓仔发布了新的文献求助10
3秒前
涣醒完成签到,获得积分10
3秒前
火枪手发布了新的文献求助10
4秒前
小秋发布了新的文献求助10
4秒前
hcq完成签到,获得积分10
4秒前
PONY发布了新的文献求助10
5秒前
愉快若剑发布了新的文献求助10
5秒前
Hherman发布了新的文献求助10
7秒前
7秒前
柳子枭完成签到,获得积分20
8秒前
8秒前
孤独师发布了新的文献求助10
9秒前
善学以致用应助哈哈哈哈采纳,获得10
9秒前
cha236完成签到,获得积分10
9秒前
Song发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
隐形曼青应助文章必发采纳,获得10
11秒前
平常亦凝发布了新的文献求助10
12秒前
zz发布了新的文献求助10
14秒前
Faith完成签到,获得积分10
14秒前
英姑应助嗝额额呃呃呃采纳,获得10
14秒前
李健的小迷弟应助杜凯兴采纳,获得10
15秒前
one发布了新的文献求助10
15秒前
桐桐应助ngg采纳,获得10
15秒前
Lucas应助朴素烨霖采纳,获得10
15秒前
科研靓仔完成签到,获得积分10
15秒前
gan发布了新的文献求助10
15秒前
呐呐呐发布了新的文献求助10
16秒前
拼搏冷卉发布了新的文献求助10
16秒前
xuz发布了新的文献求助10
16秒前
17秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200134
求助须知:如何正确求助?哪些是违规求助? 2849863
关于积分的说明 8070201
捐赠科研通 2513660
什么是DOI,文献DOI怎么找? 1346539
科研通“疑难数据库(出版商)”最低求助积分说明 640227
邀请新用户注册赠送积分活动 610137