Investigating Collective Emotional Structures: Theoretical and Analytical Implications of the ‘Deep Story’ Concept

认识论 社会学 心理学 社会心理学 认知科学 哲学
作者
Maja Sawicka
出处
期刊:Cultural Sociology [SAGE]
卷期号:18 (2): 199-216 被引量:1
标识
DOI:10.1177/17499755241231014
摘要

Since Hochschild proposed the notion of a ‘deep story’ to address a collective emotional structure (particularly resentment) underpinning political attitudes and social divisions in the contemporary USA, this category has been widely embraced across social sciences to reflect upon links between sedimented emotions, motivations, actions and means of social mobilization. Simultaneously, however, criticism of this concept has been articulated which pointed out that Hochschild was inconsistent in her understanding of deep stories and the role this category performs in a sociological investigation. Acknowledging critical addresses presented so far, the article aims at the reconstruction of this concept as an analytical device which can be used to account for collective emotional dynamics accompanying prolonged social transformations. I propose that a deep story can be best understood as a social space in which emotions emerge through an interactional, collaborative process of storytelling. I draw, first, from social-psychological investigations into collective processes of meaning-making to analyse the interplay between the emergence of group-based cognitive categories and their affective implications. Second, I employ narrative theories to account for socio-psychological processes in which group-based, collectively generated cognitive and affective elements are integrated into actual lifeworlds and deployed in sense-making. Finally, I consider the insights pertaining to emotions collectively felt and practised to reflect upon the social dynamic of emotion-sharing. I argue that the notion of a ‘deep story’ is analytically useful only insofar it is embedded in clearly articulated theoretical assertions about cognitive and affective, collective and interpersonal, dynamics of meaning-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Max完成签到,获得积分10
1秒前
小马甲应助积极的身影采纳,获得10
1秒前
w王王完成签到 ,获得积分10
1秒前
Owen应助一下没奈何采纳,获得10
1秒前
2秒前
2秒前
Dwyane发布了新的文献求助10
2秒前
科研通AI2S应助岸上牛采纳,获得10
3秒前
rabwang发布了新的文献求助10
3秒前
科研通AI2S应助小叶采纳,获得10
4秒前
科研通AI2S应助小叶采纳,获得10
4秒前
6秒前
zhang完成签到 ,获得积分10
6秒前
6秒前
weiy关注了科研通微信公众号
7秒前
zhw297发布了新的文献求助30
7秒前
羊羊羊发布了新的文献求助30
7秒前
9秒前
xuanqing发布了新的文献求助10
9秒前
10秒前
隐形曼青应助欢喜采纳,获得10
11秒前
12秒前
12秒前
carrie发布了新的文献求助10
12秒前
zy完成签到,获得积分10
14秒前
yu发布了新的文献求助10
15秒前
情怀应助百里书兰采纳,获得10
15秒前
15秒前
科研小白完成签到,获得积分10
15秒前
16秒前
11发布了新的文献求助10
17秒前
辛勤夜安完成签到 ,获得积分10
17秒前
大个应助zy采纳,获得10
17秒前
Sophia发布了新的文献求助10
18秒前
科研通AI2S应助留你在此处采纳,获得10
18秒前
谦让钧发布了新的文献求助10
19秒前
22秒前
23秒前
梅思寒发布了新的文献求助30
23秒前
24秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186182
求助须知:如何正确求助?哪些是违规求助? 2836515
关于积分的说明 8009537
捐赠科研通 2498848
什么是DOI,文献DOI怎么找? 1333962
科研通“疑难数据库(出版商)”最低求助积分说明 636964
邀请新用户注册赠送积分活动 604863