已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 经济 市场经济 结构工程 系统工程 程序设计语言 操作系统
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:36 (8): 1695-1714
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cosmosurfer完成签到,获得积分10
8秒前
zoe发布了新的文献求助10
9秒前
万能图书馆应助kktsy采纳,获得10
11秒前
可爱的函函应助橘栀采纳,获得10
14秒前
15秒前
菜根谭完成签到 ,获得积分10
17秒前
深情安青应助ah采纳,获得10
17秒前
科研通AI2S应助芜湖采纳,获得10
17秒前
19秒前
20秒前
20秒前
21秒前
孤独箴言发布了新的文献求助10
24秒前
zoe发布了新的文献求助10
25秒前
kktsy发布了新的文献求助10
25秒前
27秒前
欣慰问凝发布了新的文献求助10
27秒前
Radiant发布了新的文献求助10
32秒前
32秒前
cyanpomelo完成签到,获得积分10
33秒前
sl完成签到 ,获得积分10
37秒前
英姑应助孤独箴言采纳,获得30
42秒前
49秒前
欣慰问凝完成签到 ,获得积分10
51秒前
HarryYang完成签到 ,获得积分10
53秒前
李健应助燃烧的小火苗采纳,获得30
55秒前
桃李不言发布了新的文献求助10
55秒前
搜集达人应助琳琳采纳,获得10
56秒前
Ammr完成签到 ,获得积分10
57秒前
无极完成签到 ,获得积分10
1分钟前
涛老三完成签到 ,获得积分10
1分钟前
LLLL发布了新的文献求助10
1分钟前
1分钟前
kktsy完成签到,获得积分10
1分钟前
朴素的迎天关注了科研通微信公众号
1分钟前
doctor2023完成签到,获得积分10
1分钟前
1分钟前
1分钟前
慢慢完成签到 ,获得积分10
1分钟前
HoraDorathy发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963148
求助须知:如何正确求助?哪些是违规求助? 3509019
关于积分的说明 11144868
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621