Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 市场经济 结构工程 操作系统 经济 程序设计语言 系统工程
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:36 (8): 1695-1714 被引量:1
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
caoyuya123完成签到 ,获得积分10
刚刚
萍子完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
大胆的如凡完成签到,获得积分10
1秒前
脑洞疼应助黑豆子采纳,获得10
2秒前
2秒前
领导范儿应助白英采纳,获得10
2秒前
2秒前
情怀应助清脆的代芹采纳,获得10
3秒前
3秒前
xutong de完成签到,获得积分10
3秒前
完美世界应助WN采纳,获得30
3秒前
Shannon完成签到,获得积分10
3秒前
Jared应助大神牛猪羊采纳,获得10
3秒前
3秒前
3秒前
3秒前
轻松戎完成签到,获得积分10
4秒前
贾克斯发布了新的文献求助10
4秒前
xiaolcj发布了新的文献求助10
4秒前
尹辉发布了新的文献求助10
5秒前
yiqi发布了新的文献求助10
5秒前
锤你发布了新的文献求助10
5秒前
6秒前
生动谷蓝完成签到,获得积分10
6秒前
铃兰发布了新的文献求助10
6秒前
刘娇发布了新的文献求助10
6秒前
万能图书馆应助能干的捕采纳,获得10
6秒前
11111发布了新的文献求助10
6秒前
xixi发布了新的文献求助10
7秒前
7秒前
7秒前
view完成签到,获得积分10
7秒前
天天快乐应助1241343948采纳,获得10
7秒前
7秒前
7秒前
降臣发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769