Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 市场经济 结构工程 操作系统 经济 程序设计语言 系统工程
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:36 (8): 1695-1714 被引量:1
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助独指蜗牛采纳,获得10
刚刚
淡定冰双发布了新的文献求助10
刚刚
2秒前
2秒前
冬青完成签到,获得积分10
2秒前
Ym发布了新的文献求助10
2秒前
肖子瑶发布了新的文献求助10
2秒前
叮叮车发布了新的文献求助10
3秒前
朴素冰旋完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助滴滴滴采纳,获得10
6秒前
7秒前
liulin完成签到,获得积分10
7秒前
美味又健康完成签到 ,获得积分10
7秒前
小胡发布了新的文献求助10
8秒前
淡定冰双完成签到,获得积分10
8秒前
9秒前
大智若愚骨头完成签到,获得积分10
9秒前
岗岗发布了新的文献求助10
10秒前
完美世界应助Supreme采纳,获得10
11秒前
丫丫完成签到,获得积分10
11秒前
英俊的铭应助叮叮车采纳,获得10
11秒前
11秒前
瘦瘦幻梦发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
13秒前
will214发布了新的文献求助30
13秒前
14秒前
小老虎Milly完成签到,获得积分10
15秒前
15秒前
科研通AI5应助故意的驳采纳,获得30
17秒前
SciGPT应助123采纳,获得10
17秒前
dd完成签到,获得积分10
17秒前
科研q完成签到 ,获得积分10
17秒前
朴实香露完成签到 ,获得积分10
17秒前
李小强完成签到,获得积分10
18秒前
科研通AI5应助夏天不回来采纳,获得10
18秒前
爆米花应助眉间一把刀采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178503
求助须知:如何正确求助?哪些是违规求助? 4366768
关于积分的说明 13595915
捐赠科研通 4217093
什么是DOI,文献DOI怎么找? 2312847
邀请新用户注册赠送积分活动 1311701
关于科研通互助平台的介绍 1260036