Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 市场经济 结构工程 操作系统 经济 程序设计语言 系统工程
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:36 (8): 1695-1714 被引量:1
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lingVing瑜完成签到 ,获得积分10
3秒前
6秒前
jxm完成签到,获得积分10
8秒前
8秒前
8秒前
古月完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Lucas应助aa采纳,获得10
10秒前
11秒前
DONG发布了新的文献求助10
12秒前
彬彬完成签到 ,获得积分10
13秒前
jxm发布了新的文献求助10
13秒前
xueyi_102938发布了新的文献求助10
14秒前
15秒前
浮游应助云上初感采纳,获得10
15秒前
infinite完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
way完成签到,获得积分10
20秒前
charih完成签到 ,获得积分10
21秒前
22秒前
归尘发布了新的文献求助10
23秒前
华仔应助明理的依柔采纳,获得10
24秒前
25秒前
野性的曼香完成签到,获得积分10
25秒前
争气完成签到,获得积分10
26秒前
正直听白完成签到,获得积分10
26秒前
cdh发布了新的文献求助10
28秒前
29秒前
aa发布了新的文献求助10
30秒前
善学以致用应助雨竹采纳,获得10
31秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
cdh完成签到,获得积分10
34秒前
醉意拥桃枝完成签到 ,获得积分10
34秒前
风笛完成签到,获得积分10
36秒前
37秒前
朴实海亦完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419