Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 市场经济 结构工程 操作系统 经济 程序设计语言 系统工程
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:36 (8): 1695-1714 被引量:1
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
土豪的雅柔完成签到,获得积分10
1秒前
ddd发布了新的文献求助10
1秒前
简单的听寒完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI2S应助Haru采纳,获得30
2秒前
黑章鱼保罗完成签到,获得积分10
2秒前
文静谷秋完成签到,获得积分10
3秒前
Ttttt发布了新的文献求助10
4秒前
传奇3应助姚序东采纳,获得10
4秒前
4秒前
Sy发布了新的文献求助10
4秒前
DingShicong完成签到 ,获得积分10
4秒前
5秒前
聂落雁发布了新的文献求助10
5秒前
陈木子发布了新的文献求助10
5秒前
5秒前
朱子完成签到,获得积分10
6秒前
豌豆米应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
Rae完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
李庭福发布了新的文献求助10
7秒前
ZX801发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
帅气的绿凝完成签到,获得积分10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
ouyang发布了新的文献求助10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
able应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313