Multi-hierarchy Network Configuration Can Predict Brain States and Performance

等级制度 节点(物理) 集合(抽象数据类型) 模块化设计 任务(项目管理) 计算机科学 人工智能 工程类 市场经济 结构工程 操作系统 经济 程序设计语言 系统工程
作者
Bin Wang,Yuting Yuan,Lan Yang,Yin Huang,Xi Zhang,Xingyu Zhang,Wenjie Yan,Ying Li,Dandan Li,Jie Xiang,Jiajia Yang,Miao Liu
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:36 (8): 1695-1714 被引量:1
标识
DOI:10.1162/jocn_a_02153
摘要

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
osel发布了新的文献求助10
1秒前
夜绒枭关注了科研通微信公众号
2秒前
gao发布了新的文献求助10
2秒前
小二郎应助王猛采纳,获得30
2秒前
3秒前
今后应助一路硕博采纳,获得10
4秒前
5秒前
5秒前
xzy998应助yunwei采纳,获得10
5秒前
茶叶盒发布了新的文献求助10
6秒前
8秒前
李健应助啵啵啵小太阳采纳,获得10
8秒前
科研通AI6应助__采纳,获得30
8秒前
9秒前
9秒前
852应助susuu采纳,获得10
9秒前
新世界陆战队完成签到 ,获得积分10
10秒前
10秒前
咚咚糖发布了新的文献求助10
11秒前
sqxl完成签到,获得积分10
13秒前
充电宝应助HCQ采纳,获得10
13秒前
Orange应助叫我小可爱采纳,获得10
13秒前
包容惜雪完成签到,获得积分10
14秒前
Nicole发布了新的文献求助10
14秒前
15秒前
bkagyin应助细心的语蓉采纳,获得10
15秒前
15秒前
zys发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
只喝白开水完成签到,获得积分10
19秒前
19秒前
叫我小可爱完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060