Text-Enriched Air Traffic Flow Modeling and Prediction Using Transformers

变压器 计算机科学 空中交通管制 模拟 工程类 电气工程 航空航天工程 电压
作者
Chunyao Ma,Sameer Alam,Qing Cai,Daniel Delahaye
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7963-7976
标识
DOI:10.1109/tits.2024.3379210
摘要

The air traffic control paradigm is shifting from sector-based operations to flow-centric approaches to overcome sectors' geographical limits. Modeling and predicting intersecting air traffic flows can assist controllers in flow coordination under the flow-centric paradigm. This paper proposes a flow-centric framework – TEMPT: Text-Enriched air traffic flow Modeling and Prediction using Transformers – to identify, represent, and predict intersecting flows in the airspace. Firstly, nominal flow intersections (NFI) are identified through hierarchical clustering of flight trajectory intersections. A flow pattern consistency-based graph analytics approach is proposed to determine the number of NFIs. Secondly, in contrast to the traditional traffic flow feature representation, i.e., numerical time series of flights, this paper proposes a text-enriched flow feature representation to intuitively describe the "flow of flights" in the airspace. More specifically, air traffic flow features are described by a "text paragraph" composed of the time and flight sequences transiting through the NFIs. Finally, a transformer neural network model is adopted to learn the text-enriched flow features and predict the future traffic demand at the NFIs during future time windows. An experimental study was carried out in French airspace to validate the efficacy of TEMPT using one-month ADS-B data in December 2019. Prediction results show that TEMPT outperforms the competitive air traffic flow modeling and prediction approaches: time-series-based Transformers, Long Short-term Memory (LSTM), and Graph Convolutional Networks (GCN), as well as aerodynamic trajectory simulation-based prediction and the historical average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7777135发布了新的文献求助10
刚刚
刚刚
刚刚
lss完成签到,获得积分10
1秒前
继往开来应助将将采纳,获得10
1秒前
李健的小迷弟应助科研123采纳,获得10
1秒前
92年的矿泉水完成签到,获得积分10
2秒前
2秒前
2秒前
星辰大海应助蘇尼Ai采纳,获得10
2秒前
英姑应助高安之采纳,获得10
3秒前
Bertie完成签到,获得积分10
3秒前
4秒前
squeak完成签到,获得积分10
4秒前
安安关注了科研通微信公众号
5秒前
苗广山发布了新的文献求助10
5秒前
tuetue应助mashibeo采纳,获得10
6秒前
坚定的路人应助王世缘采纳,获得10
6秒前
小白是大美女完成签到,获得积分20
6秒前
刻苦颤完成签到,获得积分10
6秒前
fdaqin发布了新的文献求助10
6秒前
安静的靖发布了新的文献求助30
7秒前
无花果应助科研dog采纳,获得10
7秒前
香蕉觅云应助weiwei采纳,获得10
7秒前
越曰发布了新的文献求助30
7秒前
嘟噜完成签到 ,获得积分10
8秒前
ky幻影发布了新的文献求助10
9秒前
搜集达人应助正直涔雨采纳,获得10
9秒前
9秒前
Yifan完成签到,获得积分20
10秒前
Lucas应助chen采纳,获得10
11秒前
哈希拉玛完成签到,获得积分10
11秒前
李健应助不安太阳采纳,获得10
12秒前
老仙翁完成签到,获得积分10
12秒前
zhang发布了新的文献求助10
13秒前
MrPao发布了新的文献求助10
14秒前
14秒前
哇哇哇哇我应助淘宝叮咚采纳,获得10
14秒前
16秒前
酷波er应助将将采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198