Cross co-teaching for semi-supervised medical image segmentation

计算机科学 分割 判别式 人工智能 Boosting(机器学习) 网络拓扑 机器学习 半监督学习 任务(项目管理) 图像分割 模式识别(心理学) 管理 经济 操作系统
作者
Zhang Fan,Huiying Liu,Jinjiang Wang,Jun Lv,Qing Cai,Huafeng Li,Junyu Dong,David Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:152: 110426-110426
标识
DOI:10.1016/j.patcog.2024.110426
摘要

Excellent performance has been achieved on semi-supervised medical image segmentation, but existing algorithms perform relatively poorly for objects with variable topologies and weak boundaries. In this paper, we propose a novel cross co-teaching framework, called Cross-structure-task Collaborative Teaching (CroCT), which not only can effectively handle variable topologies, but also strengthens the learning for weak boundaries of unlabeled data. Specifically, a new cross-structure-task collaborative teaching mechanism is developed based on our designed "E-Net" structure composed of a shared encoder and two decoder branches with distinct learning paradigms, which asks these two branches to regress topology-aware signed distance functions and densely-predicted segmentation masks for each other. Powered by the collaboration across different structural biases and sequence-related tasks, our CroCT can extract more discriminative yet complementary representations from abundant raw medical data to promote the consistency learning generalization, further boosting the performance for tackling highly diverse shapes and topological changes intra-/inter-slices. Besides, it guarantees the diversities from multi-levels, i.e., structure and task perspectives, to preclude prediction uncertainty. In addition, a novel adaptive boundary enhancing (ABE) module is proposed to introduce compact annularly enhanced boundary features into semi-supervised training, which significantly improves weak boundary perception ability for unlabeled data while facilitating collaborative teaching for efficiently propagating complementary knowledge across different branches. The extensive experiments on three challenging medical benchmarks, employing different labeled settings, demonstrate the superiority of our CroCT over recent state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研途者完成签到,获得积分10
刚刚
辛勤的寒梦完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
小赵童鞋完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
小猪坨发布了新的文献求助10
5秒前
懵懂的子骞完成签到 ,获得积分10
6秒前
YXH发布了新的文献求助10
6秒前
6秒前
高高的巨人完成签到 ,获得积分10
6秒前
热心幻翠发布了新的文献求助10
7秒前
劲秉应助小赵童鞋采纳,获得30
7秒前
西奥发布了新的文献求助10
7秒前
8秒前
babayan发布了新的文献求助10
8秒前
自由冬亦完成签到,获得积分10
9秒前
qiu发布了新的文献求助10
10秒前
10秒前
chen发布了新的文献求助10
11秒前
12秒前
12秒前
ll完成签到,获得积分20
12秒前
13秒前
April完成签到,获得积分10
13秒前
等待的花卷完成签到,获得积分10
14秒前
17秒前
不吃香菜发布了新的文献求助10
17秒前
18秒前
青青子衿发布了新的文献求助10
18秒前
babayan完成签到,获得积分20
19秒前
19秒前
21秒前
张姣姣完成签到,获得积分10
21秒前
十一月的阴天完成签到 ,获得积分10
22秒前
科研通AI2S应助bias采纳,获得10
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266065
求助须知:如何正确求助?哪些是违规求助? 2905891
关于积分的说明 8335903
捐赠科研通 2576298
什么是DOI,文献DOI怎么找? 1400373
科研通“疑难数据库(出版商)”最低求助积分说明 654762
邀请新用户注册赠送积分活动 633652