Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis

端粒 基因 疾病 计算生物学 生物 列线图 遗传学 阿尔茨海默病 聚类分析 免疫系统 生物信息学 计算机科学 医学 人工智能 肿瘤科 病理
作者
Yang Ruan,Weichao Lv,Shuaiyu Li,Yuzhong Cheng,Duanyang Wang,Chaofeng Zhang,Kuniyoshi Shimizu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106922-106922 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106922
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis.To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes.We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model.We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model.Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九安发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
11111完成签到,获得积分10
1秒前
1秒前
Archer完成签到,获得积分10
2秒前
hzh666发布了新的文献求助10
2秒前
木南发布了新的文献求助10
2秒前
香蕉觅云应助于冰清采纳,获得10
2秒前
Xiao完成签到,获得积分10
3秒前
谷云发布了新的文献求助10
4秒前
4秒前
小陈同学应助megumi采纳,获得10
4秒前
医院的孩子完成签到,获得积分10
4秒前
年轻海云发布了新的文献求助10
4秒前
无极微光应助震动的友琴采纳,获得20
5秒前
5秒前
哈哈发布了新的文献求助10
6秒前
6秒前
无限鸵鸟发布了新的文献求助10
6秒前
苹果不去想橘子的问题完成签到,获得积分10
7秒前
7秒前
大方从阳完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
向阳发布了新的文献求助10
9秒前
有魅力冰兰完成签到,获得积分20
9秒前
大方从阳发布了新的文献求助10
10秒前
辅助但上分完成签到,获得积分10
11秒前
张巨锋发布了新的文献求助10
12秒前
13秒前
13秒前
LChen发布了新的文献求助10
14秒前
14秒前
ichia发布了新的文献求助10
15秒前
调皮枫叶发布了新的文献求助10
16秒前
17秒前
无限鸵鸟完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233