亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis

端粒 基因 疾病 计算生物学 生物 列线图 遗传学 阿尔茨海默病 聚类分析 免疫系统 生物信息学 计算机科学 医学 人工智能 肿瘤科 病理
作者
Yang Ruan,Weichao Lv,Shuaiyu Li,Yuzhong Cheng,Duanyang Wang,Chaofeng Zhang,Kuniyoshi Shimizu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106922-106922 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106922
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis.To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes.We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model.We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model.Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Freeasy完成签到 ,获得积分10
2秒前
SciGPT应助krajicek采纳,获得10
7秒前
x夏天完成签到 ,获得积分10
13秒前
zoey完成签到,获得积分10
16秒前
28秒前
sofardli完成签到,获得积分10
28秒前
sofardli发布了新的文献求助20
32秒前
41秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
NattyPoe应助科研通管家采纳,获得10
54秒前
NattyPoe应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
krajicek发布了新的文献求助10
2分钟前
2分钟前
2分钟前
wanci应助Willow采纳,获得10
2分钟前
2分钟前
刘哈哈完成签到 ,获得积分10
2分钟前
cdercder完成签到,获得积分0
2分钟前
粽子完成签到,获得积分10
2分钟前
Esperanza完成签到,获得积分10
2分钟前
orixero应助保持科研热情采纳,获得10
2分钟前
2分钟前
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
Willow完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786