Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis

端粒 基因 疾病 计算生物学 生物 列线图 遗传学 阿尔茨海默病 聚类分析 免疫系统 生物信息学 计算机科学 医学 人工智能 肿瘤科 病理
作者
Yang Ruan,Weichao Lv,Shuaiyu Li,Yuzhong Cheng,Duanyang Wang,Chaofeng Zhang,Kuniyoshi Shimizu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106922-106922 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106922
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis.To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes.We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model.We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model.Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助YeSun采纳,获得50
刚刚
荃芏发布了新的文献求助10
刚刚
刚刚
西瓜完成签到,获得积分10
刚刚
Wendy发布了新的文献求助10
1秒前
顾矜应助君姊采纳,获得10
1秒前
1秒前
1秒前
Jasper应助沈星星采纳,获得10
2秒前
打工小房应助可靠的如之采纳,获得30
2秒前
2秒前
2秒前
英俊的铭应助外向薯片采纳,获得10
2秒前
3秒前
betty完成签到,获得积分10
3秒前
3秒前
grh发布了新的文献求助10
3秒前
研友_VZG7GZ应助繁荣的夏烟采纳,获得10
4秒前
英俊的铭应助谨慎嫣然采纳,获得10
4秒前
清新的雁凡完成签到,获得积分10
5秒前
6秒前
6秒前
wkjfh举报cd求助涉嫌违规
6秒前
人类后腿发布了新的文献求助10
7秒前
7秒前
HCT发布了新的文献求助10
8秒前
小马驹发布了新的文献求助10
8秒前
多米发布了新的文献求助10
8秒前
8秒前
共享精神应助荃芏采纳,获得10
9秒前
伊蕾娜是我老婆完成签到 ,获得积分10
9秒前
Ana_Chunyi完成签到,获得积分10
9秒前
Hello应助WangXuerong采纳,获得10
10秒前
10秒前
lipppfff发布了新的文献求助10
11秒前
Hello应助grh采纳,获得10
11秒前
YY发布了新的文献求助10
11秒前
今后应助出海流浪采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383