Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis

端粒 基因 疾病 计算生物学 生物 列线图 遗传学 阿尔茨海默病 聚类分析 免疫系统 生物信息学 计算机科学 医学 人工智能 肿瘤科 病理
作者
Yang Ruan,Weichao Lv,Shuaiyu Li,Yuzhong Cheng,Duanyang Wang,Chaofeng Zhang,Kuniyoshi Shimizu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106922-106922 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106922
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis.To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes.We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model.We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model.Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的无敌完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助kkyy采纳,获得30
2秒前
autism发布了新的文献求助10
2秒前
独特的水香完成签到,获得积分10
2秒前
脑洞疼应助背后的映寒采纳,获得10
2秒前
华仔应助Sing采纳,获得10
2秒前
2秒前
2秒前
3秒前
lyx完成签到,获得积分20
3秒前
3秒前
dagongren关注了科研通微信公众号
3秒前
任性的皮皮虾完成签到,获得积分10
3秒前
3秒前
涨涨涨张发布了新的文献求助10
3秒前
蔬菜狗狗发布了新的文献求助20
3秒前
4秒前
orixero应助潼络采纳,获得10
5秒前
科研通AI6应助hj木秀于林采纳,获得10
5秒前
今天看文献了吗完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
曲曲发布了新的文献求助30
6秒前
6秒前
7秒前
上官若男应助科研王采纳,获得10
7秒前
彩虹捕手完成签到,获得积分10
7秒前
仙贝完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
7秒前
hibye发布了新的文献求助10
7秒前
8秒前
死亦生矣完成签到 ,获得积分10
9秒前
魄渊发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
坚果完成签到,获得积分10
10秒前
Lmy发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928