Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis

端粒 基因 疾病 计算生物学 生物 列线图 遗传学 阿尔茨海默病 聚类分析 免疫系统 生物信息学 计算机科学 医学 人工智能 肿瘤科 病理
作者
Yijun Ruan,Weichao Lv,Shuaiyu Li,Yuzhong Cheng,Duanyang Wang,Chaofeng Zhang,Kuniyoshi Shimizu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106922-106922 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.106922
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis.To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes.We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model.We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model.Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duan发布了新的文献求助10
刚刚
lele发布了新的文献求助10
刚刚
今后应助双非上岸985采纳,获得10
刚刚
五十完成签到,获得积分10
刚刚
大模型应助聪明帅哥采纳,获得10
1秒前
Letter完成签到 ,获得积分10
1秒前
MissZhang发布了新的文献求助20
1秒前
Aniee完成签到,获得积分10
1秒前
在水一方应助斯人采纳,获得10
1秒前
2秒前
王雨晴完成签到,获得积分10
2秒前
Winks完成签到,获得积分10
3秒前
4秒前
6秒前
啦啦啦完成签到 ,获得积分10
6秒前
huy完成签到,获得积分10
6秒前
sss完成签到,获得积分20
6秒前
Alley发布了新的文献求助10
6秒前
mmh发布了新的文献求助10
6秒前
胡萝卜完成签到,获得积分10
7秒前
yyuan1200完成签到,获得积分10
7秒前
可爱的函函应助大气早晨采纳,获得10
8秒前
共享精神应助大气早晨采纳,获得10
8秒前
9秒前
9秒前
翁雁丝发布了新的文献求助10
9秒前
汉堡包应助淡写采纳,获得10
10秒前
炸娜发布了新的文献求助10
10秒前
jack潘完成签到,获得积分10
10秒前
陆小果完成签到,获得积分10
11秒前
嗯哼应助甄人达采纳,获得20
12秒前
wu完成签到 ,获得积分10
12秒前
小蕉蕉嘛发布了新的文献求助10
13秒前
黯然完成签到,获得积分20
13秒前
李Li发布了新的文献求助10
13秒前
nbing完成签到,获得积分10
13秒前
13gly完成签到,获得积分10
14秒前
多情以山完成签到 ,获得积分10
14秒前
Legend_完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012