多硫化物
电化学
硫黄
材料科学
氢氧化物
电催化剂
化学工程
催化作用
纳米技术
化学
无机化学
冶金
电解质
物理化学
电极
生物化学
工程类
作者
Min Li,Yebao Li,Qiao Cu,Yan Li,Hongyang Li,Zihao Li,Ming Li,Hua Liao,Ge Li,Gaoran Li,Xin Wang
标识
DOI:10.34133/energymatadv.0032
摘要
Lithium-sulfur batteries (LSBs) are promising candidates for next-generation high-efficiency energy storage, yet their practical implementation is seriously impeded by the parasitic shuttle effect and sluggish reaction kinetics. Herein, we develop a unique Cu, Co layered double hydroxide (CuCo-LDH) with a hollow and hierarchical structure as an advanced electrocatalyst to tackle these challenges. Combining the compositional, architectural, and chemical advantages, the as-developed CuCo-LDH enables facile charge transfer, fully exposed active interfaces, and strong interactions with polysulfides via metal–sulfur bonding. When employed in the functional separator, a reliable polysulfide barrier can be established against the shuttling behavior, while the excellent catalytic activity realizes fast and efficient sulfur electrochemistry. As a result, the CuCo-LDH-based LSBs achieve a well-restrained capacity decay of 0.049% per cycle over 500 cycles together with a good rate capability up to 5 C. Moreover, a favorable areal capacity of 4.39 mAh cm −2 and decent cyclability are still attainable even under a high sulfur loading of 4.2 mg cm −2 and a low E/S ratio of 6 ml g −1 . This work affords a feasible and instructive pathway toward advanced sulfur electrocatalysts as well as high-performance LSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI