亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prediction-Based Approach for Online Dynamic Appointment Scheduling: A Case Study in Radiotherapy Treatment

计算机科学 调度(生产过程) 可解释性 利用 动态优先级调度 运筹学 数学优化 运营管理 机器学习 地铁列车时刻表 数学 计算机安全 工程类 经济 操作系统
作者
Tu-San Pham,Antoine Legrain,Patrick De Causmaecker,Louis-Martin Rousseau
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 844-868 被引量:4
标识
DOI:10.1287/ijoc.2023.1289
摘要

Patient scheduling is a difficult task involving stochastic factors, such as the unknown arrival times of patients. Similarly, the scheduling of radiotherapy for cancer treatments needs to handle patients with different urgency levels when allocating resources. High-priority patients may arrive at any time, and there must be resources available to accommodate them. A common solution is to reserve a flat percentage of treatment capacity for emergency patients. However, this solution can result in overdue treatments for urgent patients, a failure to fully exploit treatment capacity, and delayed treatments for low-priority patients. This problem is especially severe in large and crowded hospitals. In this paper, we propose a prediction-based approach for online dynamic radiotherapy scheduling that dynamically adapts the present scheduling decision based on each incoming patient and the current allocation of resources. Our approach is based on a regression model trained to recognize the links between patients’ arrival patterns and their ideal waiting time in optimal off-line solutions when all future arrivals are known in advance. When our prediction-based approach is compared with flat-reservation policies, it does a better job of preventing overdue treatments for emergency patients and also maintains comparable waiting times for the other patients. We also demonstrate how our proposed approach supports explainability and interpretability in scheduling decisions using Shapley additive explanation values. History: Accepted by Erwin Pesch, Area Editor for Heuristic Search & Approximation Algorithms. Funding: Mitacs Accélération IT26995 and Canada Research Chair in Analytics and Logistics in Healthcare (HANALOG). Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1289 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0342 ) at ( http://dx.doi.org/10.5281/zenodo.7579533 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIN完成签到 ,获得积分10
4秒前
8秒前
liu完成签到 ,获得积分10
10秒前
与光完成签到 ,获得积分10
11秒前
3113129605完成签到 ,获得积分10
12秒前
单薄的誉完成签到,获得积分10
15秒前
20秒前
schen完成签到 ,获得积分10
20秒前
21秒前
JamesPei应助啊呜0u0采纳,获得30
23秒前
guan发布了新的文献求助10
27秒前
34秒前
星辰大海应助guan采纳,获得10
35秒前
星星完成签到 ,获得积分10
35秒前
37秒前
1分钟前
嗨Honey完成签到 ,获得积分10
1分钟前
1分钟前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
基金中中中完成签到,获得积分10
1分钟前
bingbing完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阔达的向南完成签到,获得积分10
1分钟前
杳鸢应助个性的小丸子采纳,获得10
1分钟前
杳鸢应助个性的小丸子采纳,获得10
1分钟前
1分钟前
三叔完成签到,获得积分0
1分钟前
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022875
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502731
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387