亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly-Interactive-Mixed Learning: Less Labelling Cost for Better Medical Image Segmentation

计算机科学 过度拟合 分割 注释 人工智能 任务(项目管理) 机器学习 图像分割 监督学习 图像自动标注 尺度空间分割 模式识别(心理学) 图像检索 图像(数学) 人工神经网络 管理 经济
作者
Xiuping Nie,Lilu Liu,Lifeng He,Liang Zhao,Haojian Lu,Songmei Lou,Rong Xiong,Yue Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3270-3281 被引量:2
标识
DOI:10.1109/jbhi.2023.3268157
摘要

Common medical image segmentation tasks require large training datasets with pixel-level annotations which are very expensive and time-consuming to prepare. To overcome such limitation and achieve the desired segmentation accuracy, a novel Weakly-Interactive-Mixed Learning (WIML) framework is proposed by efficiently using weak labels. On one hand, utilize weak labels to reduce annotation time for high-quality strong labels by designing a Weakly-Interactive Annotation (WIA) part of the WIML which prudently introduces interactive learning into the weakly-supervised segmentation strategy. On the other hand, utilize weak labels and very few strong labels to achieve desired segmentation accuracy by designing a Mixed-Supervised Learning (MSL) part of the WIML which can boost the segmentation accuracy by providing strong prior knowledge during training. Besides, a multi-task Full-Parameter-Sharing Network (FPSNet) is proposed to better implement this framework. Specifically, to further reduce annotation time, attention modules (scSE) are integrated into FPSNet to improve the class activation map (CAM) performance for the first time. To further improve segmentation accuracy, a Full-Parameter-Sharing (FPS) strategy is designed in FPSNet to alleviate the overfitting of the segmentation task supervised by very few strong labels. The proposed method is validated on the BraTS 2019 and LiTS 2017 datasets, and experiments demonstrate that the proposed method WIML-FPSNet outperforms several state-of-the-art segmentation methods with minimal annotation efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后紫夏完成签到,获得积分10
12秒前
17秒前
19秒前
在水一方应助罗舒采纳,获得10
21秒前
jane发布了新的文献求助10
22秒前
吴糖发布了新的文献求助10
24秒前
25秒前
30秒前
31秒前
SYLH应助lewis17采纳,获得10
31秒前
陈C发布了新的文献求助10
31秒前
汉堡包应助jane采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
39秒前
木子水告完成签到,获得积分10
41秒前
jane完成签到,获得积分10
45秒前
chujun_cai完成签到 ,获得积分10
46秒前
CipherSage应助eye采纳,获得10
46秒前
YU完成签到 ,获得积分10
54秒前
yu完成签到 ,获得积分10
56秒前
1分钟前
从容成危完成签到,获得积分10
1分钟前
Able完成签到,获得积分10
1分钟前
木有完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
TangWL完成签到 ,获得积分10
1分钟前
haly完成签到 ,获得积分10
1分钟前
chenjzhuc完成签到,获得积分10
1分钟前
1分钟前
eye发布了新的文献求助10
1分钟前
cc123完成签到,获得积分10
1分钟前
天黑不打烊完成签到,获得积分10
2分钟前
李健应助早起先喝一碗粥采纳,获得10
2分钟前
猕猴桃猴完成签到,获得积分10
2分钟前
情怀应助袁咏琳冲冲冲采纳,获得10
2分钟前
eye发布了新的文献求助10
2分钟前
香风智乃完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176