Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke

系统药理学 小桶 药理学 活性成分 计算生物学 生物 药品 基因 基因表达 生物化学 基因本体论
作者
Saihong Zhao,Ping Zhang,Yonghuan Yan,Weifang Xu,Jiacheng Li,Lei Wang,Ning Wang,Ying‐Ying Huang
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:312: 116507-116507 被引量:16
标识
DOI:10.1016/j.jep.2023.116507
摘要

Huangxiong Formula (HXF) is composed of four herbs: Rheum palmatum L., Ligusticum striatum DC., Curcuma aromatica Salisb., and Acorus gramineus Aiton. HXF is clinically used for the treatment of ischemic stroke (IS). However, its molecular mechanism remains unclear.A network pharmacology-based strategy combined with experimental study in vivo and in vitro to were used to investigate the bioactive components, potential targets, and molecular mechanisms of HXF in the treatment of IS.The components of HXF were detected by ultra-performance liquid chromatography (UPLC). The potential active ingredients of HXF were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and corresponding targets were discerned through the Swiss TargetPrediction database. IS-related targets were obtained from Genecards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DisGeNET. The intersection of ingredient and disease targets was screened, and a herbal-compound-target network was constructed. A protein-protein interaction (PPI) network was created, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Based on these analyses, we established a compound-target-pathway (C-T-P) network. A cerebral ischemia-reperfusion (I/R) animal model was established, and the cerebral protective effect of HXF was assessed. The accuracy of the predicted targets was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Hippocampal neuronal injury cell model induced by oxygen-glucose deprivation and reperfusion (OGD/R) was used to evaluate the protective effect of α-Asarone. Furthermore, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to verify whether α-Asarone can bind to PI3K.A total of 44 active ingredients and 795 gene targets were identified through network pharmacology. Network analysis showed that naringenin, eupatin, kaempferol, and α-Asarone were possible drug candidates. SRC, AKT1, TP53, MAPK3, STAT3, HRAS, CTNNB1, EGFR, VEGFA, PIK3R1 could serve as potential drug targets. KEGG analysis implied that the PI3K/AKT signaling pathway might play an important role in treating IS by HXF. Moreover, HXF significantly reduced neurological impairment, cerebral infarct volume, brain index, and brain histopathological damage in I/R rats. The mRNA expression of the top 10 potential targets was verified in the brain tissue. The C-T-P network and UPLC analysis suggested that α-Asarone might be an important component of HXF and can inhibit oxidative stress and apoptosis in HT22 cells by activating the PI3K/AKT signaling pathway. Molecular docking, DARTS, and CETSA assay analysis confirmed that there were direct interactions between α-Asarone and PI3K.HXF had a therapeutic effect in IS with multi-component, multi-target, and multi-approach features. α-Asarone, identified as one of the major active components of HXF, could alleviate oxidative stress and apoptosis by targeting PI3K/AKT pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Ning完成签到,获得积分10
1秒前
叮咚鸡发布了新的文献求助10
1秒前
Hello应助放放采纳,获得10
1秒前
路旁小白发布了新的文献求助20
1秒前
甜美早晨完成签到,获得积分10
1秒前
瓜瓜完成签到 ,获得积分10
3秒前
li完成签到,获得积分20
3秒前
fff1发布了新的文献求助10
4秒前
黄油可颂发布了新的文献求助10
4秒前
4秒前
5秒前
打打应助kitty采纳,获得30
5秒前
5秒前
小野猪发布了新的文献求助10
5秒前
6秒前
6秒前
镜中人完成签到,获得积分10
6秒前
斯文败类应助Feng采纳,获得10
6秒前
7秒前
7秒前
六个核桃发布了新的文献求助10
7秒前
8秒前
充电宝应助111采纳,获得10
9秒前
9秒前
9秒前
10秒前
隐形曼青应助番茄椰采纳,获得10
10秒前
张惠兰发布了新的文献求助10
11秒前
11秒前
11秒前
T_KYG完成签到,获得积分10
11秒前
ahua完成签到 ,获得积分10
11秒前
畅快醉冬发布了新的文献求助10
12秒前
吾星安处发布了新的文献求助10
12秒前
12秒前
哦啦啦发布了新的文献求助10
13秒前
HM发布了新的文献求助10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401