Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke

系统药理学 小桶 药理学 活性成分 计算生物学 生物 药品 基因 基因表达 生物化学 基因本体论
作者
Saihong Zhao,Ping Zhang,Yonghuan Yan,Weifang Xu,Jiacheng Li,Lei Wang,Ning Wang,Ying‐Ying Huang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:312: 116507-116507 被引量:14
标识
DOI:10.1016/j.jep.2023.116507
摘要

Huangxiong Formula (HXF) is composed of four herbs: Rheum palmatum L., Ligusticum striatum DC., Curcuma aromatica Salisb., and Acorus gramineus Aiton. HXF is clinically used for the treatment of ischemic stroke (IS). However, its molecular mechanism remains unclear.A network pharmacology-based strategy combined with experimental study in vivo and in vitro to were used to investigate the bioactive components, potential targets, and molecular mechanisms of HXF in the treatment of IS.The components of HXF were detected by ultra-performance liquid chromatography (UPLC). The potential active ingredients of HXF were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and corresponding targets were discerned through the Swiss TargetPrediction database. IS-related targets were obtained from Genecards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DisGeNET. The intersection of ingredient and disease targets was screened, and a herbal-compound-target network was constructed. A protein-protein interaction (PPI) network was created, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Based on these analyses, we established a compound-target-pathway (C-T-P) network. A cerebral ischemia-reperfusion (I/R) animal model was established, and the cerebral protective effect of HXF was assessed. The accuracy of the predicted targets was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Hippocampal neuronal injury cell model induced by oxygen-glucose deprivation and reperfusion (OGD/R) was used to evaluate the protective effect of α-Asarone. Furthermore, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to verify whether α-Asarone can bind to PI3K.A total of 44 active ingredients and 795 gene targets were identified through network pharmacology. Network analysis showed that naringenin, eupatin, kaempferol, and α-Asarone were possible drug candidates. SRC, AKT1, TP53, MAPK3, STAT3, HRAS, CTNNB1, EGFR, VEGFA, PIK3R1 could serve as potential drug targets. KEGG analysis implied that the PI3K/AKT signaling pathway might play an important role in treating IS by HXF. Moreover, HXF significantly reduced neurological impairment, cerebral infarct volume, brain index, and brain histopathological damage in I/R rats. The mRNA expression of the top 10 potential targets was verified in the brain tissue. The C-T-P network and UPLC analysis suggested that α-Asarone might be an important component of HXF and can inhibit oxidative stress and apoptosis in HT22 cells by activating the PI3K/AKT signaling pathway. Molecular docking, DARTS, and CETSA assay analysis confirmed that there were direct interactions between α-Asarone and PI3K.HXF had a therapeutic effect in IS with multi-component, multi-target, and multi-approach features. α-Asarone, identified as one of the major active components of HXF, could alleviate oxidative stress and apoptosis by targeting PI3K/AKT pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YW发布了新的文献求助30
刚刚
xg发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
踏实绮露完成签到 ,获得积分10
4秒前
4秒前
iam小羊人完成签到,获得积分20
5秒前
5秒前
6秒前
失眠无声完成签到,获得积分10
6秒前
Jiang完成签到,获得积分10
7秒前
大模型应助称心的乘云采纳,获得10
7秒前
桐桐应助lw采纳,获得10
8秒前
8秒前
Hello应助连冬萱采纳,获得30
9秒前
9秒前
10秒前
Rain_BJ发布了新的文献求助10
10秒前
Carolin完成签到,获得积分10
11秒前
孙宗帅发布了新的文献求助10
11秒前
11秒前
iam小羊人发布了新的文献求助20
11秒前
12秒前
下雨天睡个懒觉完成签到,获得积分10
13秒前
丘比特应助强壮的美女采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
认真灯泡完成签到,获得积分10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
子车茗应助科研通管家采纳,获得30
14秒前
科目三应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702