Investigation of Critical Factors for Future-Proofed Transportation Infrastructure Planning Using Topic Modeling and Association Rule Mining

关联规则学习 潜在Dirichlet分配 关键基础设施 计算机科学 交通规划 鉴定(生物学) 关键成功因素 交通基础设施 管理科学 工程类 主题模型 数据挖掘 运输工程 人工智能 知识管理 计算机安全 生物 植物
作者
Sudipta Chowdhury,Jin Zhu
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (1) 被引量:11
标识
DOI:10.1061/(asce)cp.1943-5487.0001059
摘要

Most existing studies on transportation infrastructure planning focus on only one or a few critical factors. In addition, the interrelationships among different planning factors were seldom investigated. Therefore, this study aims to develop a holistic understanding of various critical factors and their interrelationships toward future-proofed transportation infrastructure planning. A novel text mining-based approach was proposed in this study to identify the critical factors and their interrelationships based on selected transportation infrastructure planning publications. Two topic modeling techniques, i.e., latent Dirichlet allocation (LDA) and nonnegative matrix factorization (NMF), were used to identify the critical and emerging topics that may affect transportation infrastructures, resulting in the automatic identification of critical factors. These factors were compiled and converted to a four-level taxonomy via bottom-up grouping. Association rule mining (ARM) was then used to discover relations among the identified factors. Among these interrelationships, eight were found to be significant based on confidence and lift values as two quantitative measures of association rules. These findings could guide transportation infrastructure planners and decision makers to have a holistic approach to planning, building, and managing our transportation infrastructure in the face of future risks and opportunities. This study also demonstrates the potential of using text mining techniques to explore new knowledge in civil infrastructure planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助苏休夫采纳,获得10
1秒前
喵喵描白完成签到,获得积分10
2秒前
丘比特应助LLLLL采纳,获得10
2秒前
bujiachong发布了新的文献求助10
3秒前
吴吴凡发布了新的文献求助10
3秒前
Henry发布了新的文献求助10
3秒前
4秒前
5秒前
hs完成签到,获得积分0
5秒前
顾矜应助冷傲的晓山采纳,获得10
6秒前
SongXJ发布了新的文献求助10
6秒前
roclie完成签到,获得积分10
6秒前
x1完成签到,获得积分10
6秒前
阿喵在挖矿完成签到 ,获得积分10
6秒前
lucky应助ZHU采纳,获得20
6秒前
6秒前
阿吉完成签到,获得积分10
7秒前
Lucas应助赵小卷采纳,获得10
7秒前
7秒前
7秒前
33完成签到 ,获得积分10
9秒前
9秒前
lbx发布了新的文献求助10
9秒前
Jared发布了新的文献求助100
9秒前
LLLLL完成签到,获得积分20
9秒前
9秒前
10秒前
ningwu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
慕青应助陈倩采纳,获得10
12秒前
竹子完成签到,获得积分10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
LXY应助科研通管家采纳,获得20
12秒前
ergrsbf应助科研通管家采纳,获得10
12秒前
安安稳稳应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503