Investigation of Critical Factors for Future-Proofed Transportation Infrastructure Planning Using Topic Modeling and Association Rule Mining

关联规则学习 潜在Dirichlet分配 关键基础设施 计算机科学 交通规划 鉴定(生物学) 关键成功因素 交通基础设施 管理科学 工程类 主题模型 数据挖掘 运输工程 人工智能 知识管理 计算机安全 植物 生物
作者
Sudipta Chowdhury,Jin Zhu
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (1) 被引量:11
标识
DOI:10.1061/(asce)cp.1943-5487.0001059
摘要

Most existing studies on transportation infrastructure planning focus on only one or a few critical factors. In addition, the interrelationships among different planning factors were seldom investigated. Therefore, this study aims to develop a holistic understanding of various critical factors and their interrelationships toward future-proofed transportation infrastructure planning. A novel text mining-based approach was proposed in this study to identify the critical factors and their interrelationships based on selected transportation infrastructure planning publications. Two topic modeling techniques, i.e., latent Dirichlet allocation (LDA) and nonnegative matrix factorization (NMF), were used to identify the critical and emerging topics that may affect transportation infrastructures, resulting in the automatic identification of critical factors. These factors were compiled and converted to a four-level taxonomy via bottom-up grouping. Association rule mining (ARM) was then used to discover relations among the identified factors. Among these interrelationships, eight were found to be significant based on confidence and lift values as two quantitative measures of association rules. These findings could guide transportation infrastructure planners and decision makers to have a holistic approach to planning, building, and managing our transportation infrastructure in the face of future risks and opportunities. This study also demonstrates the potential of using text mining techniques to explore new knowledge in civil infrastructure planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小天才完成签到 ,获得积分10
刚刚
英勇的红酒完成签到 ,获得积分10
2秒前
包容的葵阴完成签到,获得积分10
3秒前
油菜籽完成签到 ,获得积分10
3秒前
yjc完成签到 ,获得积分10
3秒前
长情凝丹发布了新的文献求助10
4秒前
Onlyyou发布了新的文献求助10
4秒前
嘻哈完成签到,获得积分20
7秒前
7秒前
夕晴完成签到,获得积分10
8秒前
SciGPT应助doubles采纳,获得30
9秒前
斯文败类应助呆萌的太阳采纳,获得10
11秒前
充电宝应助酷酷珠采纳,获得10
12秒前
星星发布了新的文献求助10
12秒前
SciGPT应助科研通管家采纳,获得10
13秒前
爱静静应助科研通管家采纳,获得10
13秒前
爱静静应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得20
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
joker完成签到,获得积分10
14秒前
在水一方应助ww采纳,获得20
14秒前
16秒前
zj1900完成签到,获得积分20
16秒前
ling关注了科研通微信公众号
18秒前
18秒前
lala完成签到,获得积分10
18秒前
21秒前
科研通AI2S应助慕山河采纳,获得10
22秒前
冰冰发布了新的文献求助10
23秒前
呼安完成签到,获得积分10
23秒前
25秒前
背后翠梅完成签到,获得积分10
25秒前
joker发布了新的文献求助10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643