Investigation of Critical Factors for Future-Proofed Transportation Infrastructure Planning Using Topic Modeling and Association Rule Mining

关联规则学习 潜在Dirichlet分配 关键基础设施 计算机科学 交通规划 鉴定(生物学) 关键成功因素 交通基础设施 管理科学 工程类 主题模型 数据挖掘 运输工程 人工智能 知识管理 计算机安全 植物 生物
作者
Sudipta Chowdhury,Jin Zhu
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (1) 被引量:11
标识
DOI:10.1061/(asce)cp.1943-5487.0001059
摘要

Most existing studies on transportation infrastructure planning focus on only one or a few critical factors. In addition, the interrelationships among different planning factors were seldom investigated. Therefore, this study aims to develop a holistic understanding of various critical factors and their interrelationships toward future-proofed transportation infrastructure planning. A novel text mining-based approach was proposed in this study to identify the critical factors and their interrelationships based on selected transportation infrastructure planning publications. Two topic modeling techniques, i.e., latent Dirichlet allocation (LDA) and nonnegative matrix factorization (NMF), were used to identify the critical and emerging topics that may affect transportation infrastructures, resulting in the automatic identification of critical factors. These factors were compiled and converted to a four-level taxonomy via bottom-up grouping. Association rule mining (ARM) was then used to discover relations among the identified factors. Among these interrelationships, eight were found to be significant based on confidence and lift values as two quantitative measures of association rules. These findings could guide transportation infrastructure planners and decision makers to have a holistic approach to planning, building, and managing our transportation infrastructure in the face of future risks and opportunities. This study also demonstrates the potential of using text mining techniques to explore new knowledge in civil infrastructure planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助dudu采纳,获得10
2秒前
YL完成签到 ,获得积分10
2秒前
吴彦祖完成签到,获得积分10
2秒前
neinei发布了新的文献求助10
3秒前
雷培发布了新的文献求助10
4秒前
genomed应助fsgfgrhg采纳,获得10
7秒前
找找完成签到 ,获得积分10
8秒前
SXR完成签到,获得积分10
10秒前
10秒前
13秒前
14秒前
dudu发布了新的文献求助10
14秒前
西门妙晴发布了新的文献求助10
16秒前
孙福禄应助ldyzz采纳,获得10
18秒前
zjcbk985发布了新的文献求助10
19秒前
老杨发布了新的文献求助30
19秒前
tian发布了新的文献求助10
21秒前
午见千山应助七月流火采纳,获得30
21秒前
dudu完成签到,获得积分10
22秒前
laber应助燕子采纳,获得50
22秒前
yx_cheng给木木的求助进行了留言
24秒前
明明完成签到 ,获得积分10
26秒前
30秒前
马宇欣完成签到,获得积分10
32秒前
七月流火给Y先生的求助进行了留言
33秒前
老杨完成签到,获得积分10
34秒前
36秒前
循环bug完成签到,获得积分10
37秒前
烟花应助tian采纳,获得10
39秒前
40秒前
猪头完成签到,获得积分10
40秒前
40秒前
Chouvikin完成签到,获得积分10
43秒前
45秒前
HSA发布了新的文献求助10
45秒前
武子阳完成签到 ,获得积分10
49秒前
51秒前
妮儿发布了新的文献求助10
52秒前
科研通AI2S应助深情的代秋采纳,获得10
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975