材料科学
支柱
纳米技术
压力(语言学)
复合材料
接触面积
结构工程
哲学
语言学
工程类
作者
Liwen Zhang,Yurun Guo,Yan Wang,Jing Liang,Yu Zhou,Xiaolin Liu,Deyuan Zhang,Huawei Chen
标识
DOI:10.1002/adfm.202205804
摘要
Abstract Robust and controllable wet attachment like tree frog toe pads attracts worldwide attention owing to potential applications in wet climbing robots, medical devices, and wearable sensors. Instead of conventional uniform pillars, nonuniform pillar arrays with features of inclination and gradients are discovered as typical structures on tree frog toe pads, whereas their effects on wet friction have been ignored. Micro‐nano in situ observation demonstrates that such a nonuniform pillar surface brings about unique multi‐dimensional self‐splitting behaviors in interfacial liquid films and contact stress distribution to enhance the wet attachment. The self‐splitting of the interfacial liquid film breaks the thick large area liquid film into an immense number of more uniform and robust tiny thin liquid bridges. Furthermore, the contact stress is redistributed by the inclined and gradient pillar array with contact stress self‐splitting, where the peak normal separating stress decreases ≈91% and lateral stress transmission increases ≈63%. Such contact stress self‐splitting further improves the liquid film self‐splitting by forming sturdy thin liquid films even under a larger load, which generates more robust capillarity with enhanced strong friction. Finally, theoretical models are built for the multi‐dimensional self‐splitting enhanced wet attachment, and applications in robotic and medical fields are performed to validate its feasibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI