列线图
医学
放射科
逻辑回归
阶段(地层学)
临床试验
核医学
肿瘤科
内科学
生物
古生物学
作者
Yunzhi Li,Peng Liu,Baohong Mao,Lili Wang,Jialiang Ren,Yongsheng Xu,Guangyao Liu,Zhonghong Xin,Junqiang Lei
出处
期刊:British Journal of Radiology
[British Institute of Radiology]
日期:2022-09-28
卷期号:95 (1140)
摘要
Accurate preoperative diagnosis of small cell neuroendocrine cancer of the cervix (SCNECC) is crucial for establishing the best treatment plan. This study aimed to develop an improved, non-invasive method for the preoperative diagnosis of SCNECC by integrating clinical, MR morphological, and apparent diffusion coefficient (ADC) information.A total of 105 pathologically confirmed cervical cancer patients (35 SCNECC, 70 non-SCNECC) from multiple centres with complete clinical and MR records were included. Whole lesion histogram analysis of the ADC was performed. Multivariate logistic regression analysis was used to develop diagnostic models based on clinical, morphological, and histogram data. The predictive performance in terms of discrimination, calibration, and clinical usefulness of the different models was assessed. A nomogram for preoperatively discriminating SCNECC was developed from the combined model.In preoperative SCNECC diagnosis, the combined model, which had a diagnostic AUC (area under the curve) of 0.937 (95% CI: 0.887-0.987), outperformed the clinical-morphological model, which had an AUC of 0.869 (CI: 0.788-0.949), and the histogram model, which had an AUC of 0.872 (CI: 0.792-0.951). The calibration curve and decision curve analyses suggest that the combined model achieved good fitting and clinical utility.Non-invasive preoperative diagnosis of SCNECC can be achieved with high accuracy by integrating clinical, MR morphological, and ADC histogram features. The nomogram derived from the combined model can provide an easy-to-use clinical preoperative diagnostic tool for SCNECC.It is clear that the therapeutic strategies for SCNECC are different from those for other pathological types of cervical cancer according to V 1.2021 of the NCCN clinical practice guidelines in oncology for cervical cancer. This research developed an improved, non-invasive method for the preoperative diagnosis of SCNECC by integrating clinical, MR morphological, and apparent diffusion coefficient (ADC) information.
科研通智能强力驱动
Strongly Powered by AbleSci AI