化学
还原(数学)
组合化学
氧化还原
溶剂
合理设计
氧还原反应
氧还原
催化作用
无机化学
电化学
纳米技术
有机化学
物理化学
电极
几何学
材料科学
数学
作者
Xu Hu,Suya Chen,Letian Chen,Yun Tian,Sai Yao,Zhengyu Lu,Xu Zhang,Zhen Zhou
摘要
Fe-N-C electrocatalysts have emerged as promising substitutes for Pt-based catalysts for the oxygen reduction reaction (ORR). However, their real catalytic active site is still under debate. The underlying roles of different types of coordinating N including pyridinic and pyrrolic N in catalytic performance require thorough clarification. In addition, how to understand the pH-dependent activity of Fe-N-C catalysts is another urgent issue. Herein, we comprehensively studied 13 different N-coordinated FeNxC configurations and their corresponding ORR activity through simulations which mimic the realistic electrocatalytic environment on the basis of constant-potential implicit solvent models. We demonstrate that coordinating pyrrolic N contributes to a higher activity than pyridinic N, and pyrrolic FeN4C exhibits the highest activity in acidic media. Meanwhile, the in situ active site transformation to *O-FeN4C and *OH-FeN4C clarifies the origin of the higher activity of Fe-N-C in alkaline media. These findings can provide indispensable guidelines for rational design of better durable Fe-N-C catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI