Generalized reactor neural ODE for dynamic reaction process modeling with physical interpretability

可解释性 颂歌 计算机科学 过程(计算) 机器学习 人工智能 控制工程 工程类 操作系统 文学类 艺术
作者
Jun Yin,Jiali Li,Iftekhar A. Karimi,Xiaonan Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:452: 139487-139487 被引量:8
标识
DOI:10.1016/j.cej.2022.139487
摘要

Modeling is essential for designing, scaling up, controlling, and optimizing a reactor or process involving reactions. However, developing high-fidelity mechanistic models from first principles for reactor systems involving complex physiochemical phenomena is usually time- and resource-consuming. Therefore, machine learning models using data-driven methods can help in such cases to fill the gap between the complex system and our limited knowledge. Currently, most research works use generic off-the-shelf machine learning models to model reactor behavior. Such models frequently face problems related to data limitations, dynamics, model accuracy, and model interpretability. Considering the increasing need for data-driven models, especially in the fine chemicals and pharmaceutical industry, this work presents a new machine learning model architecture specially for the dynamic modeling of general flow reactors. Derived from the conventional residence time distribution reactor model, our generalized reactor neural ODE (GRxnODE) can achieve, without any prior knowledge of reaction kinetics, higher model accuracy, data efficiency, and model interpretability than commonly used data-driven models. The well-trained model can predict dynamic reactor response and learn reaction kinetics and reactor RTD from process data. The source codes of the model are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LT完成签到,获得积分10
1秒前
朝朝完成签到,获得积分10
1秒前
2秒前
luo发布了新的文献求助10
3秒前
YY_PLY完成签到 ,获得积分10
3秒前
一一完成签到,获得积分10
4秒前
王家腾完成签到,获得积分10
4秒前
eisa完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
玉米脆片完成签到,获得积分20
8秒前
8秒前
脑洞疼应助T拐拐采纳,获得10
9秒前
cheng完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
顾矜应助太阳吖采纳,获得10
11秒前
12秒前
Water关注了科研通微信公众号
12秒前
轻松狗发布了新的文献求助30
12秒前
邢丹丹发布了新的文献求助10
12秒前
13秒前
tongxiner发布了新的文献求助10
13秒前
13秒前
响什么捏应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
响什么捏应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
丘比特应助科研通管家采纳,获得200
13秒前
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
14秒前
pan完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970048
求助须知:如何正确求助?哪些是违规求助? 3514739
关于积分的说明 11175783
捐赠科研通 3250115
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951