Generalized reactor neural ODE for dynamic reaction process modeling with physical interpretability

可解释性 颂歌 计算机科学 过程(计算) 机器学习 人工智能 控制工程 工程类 操作系统 文学类 艺术
作者
Jun Yin,Jiali Li,Iftekhar A. Karimi,Xiaonan Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:452: 139487-139487 被引量:8
标识
DOI:10.1016/j.cej.2022.139487
摘要

Modeling is essential for designing, scaling up, controlling, and optimizing a reactor or process involving reactions. However, developing high-fidelity mechanistic models from first principles for reactor systems involving complex physiochemical phenomena is usually time- and resource-consuming. Therefore, machine learning models using data-driven methods can help in such cases to fill the gap between the complex system and our limited knowledge. Currently, most research works use generic off-the-shelf machine learning models to model reactor behavior. Such models frequently face problems related to data limitations, dynamics, model accuracy, and model interpretability. Considering the increasing need for data-driven models, especially in the fine chemicals and pharmaceutical industry, this work presents a new machine learning model architecture specially for the dynamic modeling of general flow reactors. Derived from the conventional residence time distribution reactor model, our generalized reactor neural ODE (GRxnODE) can achieve, without any prior knowledge of reaction kinetics, higher model accuracy, data efficiency, and model interpretability than commonly used data-driven models. The well-trained model can predict dynamic reactor response and learn reaction kinetics and reactor RTD from process data. The source codes of the model are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ay完成签到,获得积分10
刚刚
1秒前
doki发布了新的文献求助10
1秒前
1秒前
lxlcx发布了新的文献求助10
1秒前
研友_nV3axZ完成签到,获得积分10
1秒前
2秒前
5712153完成签到,获得积分10
2秒前
QAQAQAQ完成签到,获得积分10
2秒前
淡淡的若冰应助JJ采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
陈词滥调完成签到,获得积分10
5秒前
5秒前
owl777发布了新的文献求助10
5秒前
文天烽完成签到,获得积分10
5秒前
小王哪跑发布了新的文献求助10
6秒前
jnngshan发布了新的文献求助10
7秒前
7秒前
鸡毛完成签到,获得积分10
7秒前
华青ww发布了新的文献求助10
7秒前
大方思柔完成签到 ,获得积分10
8秒前
丘比特应助百龄童采纳,获得10
8秒前
冷静无心发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
嵇之云发布了新的文献求助10
10秒前
胡图图完成签到,获得积分10
11秒前
11秒前
卡卡完成签到,获得积分10
11秒前
11秒前
英俊的铭应助hellohappy1201采纳,获得10
11秒前
美丽松鼠完成签到,获得积分20
11秒前
皇城有饭局完成签到,获得积分10
12秒前
12秒前
赘婿应助unflycn采纳,获得10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587