Realizing High-Efficiency Yellow Emission of Organic Antimony Halides via Rational Structural Design

材料科学 卤化物 光致发光 量子产额 晶体结构 带隙 发光 金属卤化物 合理设计 光电子学 光化学 金属 结晶学 纳米技术 无机化学 光学 化学 荧光 物理 冶金
作者
Hui Peng,Xuefei He,Qilin Wei,Ye Tian,Wenchao Lin,Shangfei Yao,Bingsuo Zou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (40): 45611-45620 被引量:51
标识
DOI:10.1021/acsami.2c14169
摘要

Zero-dimensional (0D) organic metal halides have captured extensive attention for their various structures and distinguished optical characteristics. However, achieving efficient emission through rational crystal structure design remains a great challenge, and how the crystal structure affects the photophysical properties of 0D metal halides is currently unclear. Herein, a rational crystal structure regulation strategy in 0D Sb(III)-based metal halides is proposed to realize near-unity photoluminescence quantum yield (PLQY). Specifically, two 0D organic Sb(III)-based compounds with different coordination configurations, namely, (C25H22P)2SbCl5 and (C25H22P)SbCl4 (C25H22P+ = benzyltriphenylphosphonium), were successfully obtained by precisely controlling the ratio of the initial raw materials. (C25H22P)2SbCl5 adopts an octahedral coordination geometry and shows highly efficient broadband yellow emission with a PLQY of 98.6%, while (C25H22P)SbCl4 exhibits a seesaw-shaped [SbCl4]- cluster and does not emit light under photoexcitation. Theoretical calculations reveal that, by rationally controlling the coordination structure, the indirect bandgap of (C25H22P)SbCl4 can be converted to the direct bandgap of (C25H22P)2SbCl5, thus ultimately boosting the emission intensity. Together with efficient emission and outstanding stability of (C25H22P)2SbCl5, a high-performance white-light emitting diode (WLED) with a high luminous efficiency of 31.2 lm W-1 is demonstrated. Our findings provide a novel strategy to regulate the coordination structure of the crystals, so as to rationally optimize the luminescence properties of organic metal halides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt完成签到,获得积分10
1秒前
张小汉发布了新的文献求助30
2秒前
二十四发布了新的文献求助10
2秒前
赘婿应助junzilan采纳,获得10
2秒前
FashionBoy应助勤恳的雨文采纳,获得10
2秒前
aaa完成签到,获得积分10
3秒前
4秒前
11111完成签到,获得积分20
5秒前
仔wang完成签到,获得积分10
5秒前
7秒前
忘羡222发布了新的文献求助20
7秒前
7秒前
温暖涫完成签到,获得积分10
9秒前
11111发布了新的文献求助10
9秒前
健忘的牛排完成签到,获得积分10
10秒前
wmmm完成签到,获得积分10
10秒前
Akim应助爱吃泡芙采纳,获得10
10秒前
老迟到的书雁完成签到 ,获得积分10
10秒前
10秒前
正经俠发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
学科共进完成签到,获得积分10
13秒前
百草27完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
绵马紫萁发布了新的文献求助10
16秒前
17秒前
fzhou完成签到 ,获得积分10
17秒前
尘雾发布了新的文献求助10
17秒前
18秒前
一一发布了新的文献求助20
18秒前
18秒前
Aixia完成签到 ,获得积分10
19秒前
葡萄糖完成签到,获得积分10
19秒前
哈哈完成签到,获得积分10
19秒前
在水一方应助CC采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824