Unsupervised Domain Adaptation via Deep Conditional Adaptation Network

适应(眼睛) 人工智能 计算机科学 域适应 模式识别(心理学) 机器学习 神经科学 心理学 分类器(UML)
作者
Pengfei Ge,Chuan-Xian Ren,Xiaolin Xu,Hong Yan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109088-109088 被引量:47
标识
DOI:10.1016/j.patcog.2022.109088
摘要

• A novel domain adaptation (DA) framework is proposed by aligning the conditional distributions and simultaneously extracting discriminant information from both domains. • Conditional Maximum Mean Discrepancy is used to align the conditional distributions directly by their conditional embeddings in Reproducing Kernel Hilbert Space. • We further extend the proposed DA framework on partial DA scenarios. • The proposed method achieves state-of-the-art performance on both DA and partial DA scenarios. Unsupervised domain adaptation (UDA) aims to generalize the supervised model trained on a source domain to an unlabeled target domain. Previous works mainly rely on the marginal distribution alignment of feature spaces, which ignore the conditional dependence between features and labels, and may suffer from negative transfer. To address this problem, some UDA methods focus on aligning the conditional distributions of feature spaces. However, most of these methods rely on class-specific Maximum Mean Discrepancy or adversarial training, which may suffer from mode collapse and training instability. In this paper, we propose a Deep Conditional Adaptation Network (DCAN) that aligns the conditional distributions by minimizing Conditional Maximum Mean Discrepancy, and extracts discriminant information from the target domain by maximizing the mutual information between samples and the prediction labels. Conditional Maximum Mean Discrepancy measures the difference between conditional distributions directly through their conditional embedding in Reproducing Kernel Hilbert Space, thus DCAN can be trained stably and converge fast. Mutual information can be expressed as the difference between the entropy and conditional entropy of the predicted category variable, thus DCAN can extract the discriminant information of individual and overall distributions in the target domain, simultaneously. In addition, DCAN can be used to address a special scenario, Partial UDA, where the target domain category is a subset of the source domain category. Experiments on both UDA and Partial UDA show that DCAN achieves superior classification performance over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助哭泣以筠采纳,获得10
1秒前
1秒前
小二郎应助漱泉枕石采纳,获得10
1秒前
2秒前
3秒前
想人陪的采蓝完成签到,获得积分20
4秒前
学会了吗完成签到,获得积分10
6秒前
taotao完成签到,获得积分10
6秒前
7秒前
8秒前
九个太阳发布了新的文献求助10
8秒前
11秒前
领导范儿应助低空飞行采纳,获得10
11秒前
斯文败类应助柔弱熊猫采纳,获得10
11秒前
12秒前
Xin发布了新的文献求助10
13秒前
13秒前
14秒前
小马甲应助龙虎山小天师采纳,获得10
14秒前
15秒前
深情安青应助田宇采纳,获得10
15秒前
16秒前
小薛老师发布了新的文献求助30
16秒前
16秒前
梦梦完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
是安山发布了新的文献求助10
20秒前
晴朗发布了新的文献求助10
20秒前
芒果发布了新的文献求助10
20秒前
共享精神应助宋宋采纳,获得10
21秒前
22秒前
低空飞行发布了新的文献求助10
22秒前
桐桐应助九个太阳采纳,获得10
23秒前
111发布了新的文献求助10
23秒前
柔弱熊猫发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589979
求助须知:如何正确求助?哪些是违规求助? 3158436
关于积分的说明 9519836
捐赠科研通 2861379
什么是DOI,文献DOI怎么找? 1572442
邀请新用户注册赠送积分活动 737920
科研通“疑难数据库(出版商)”最低求助积分说明 722567