Graph-based metamaterials: Deep learning of structure-property relations

材料科学 财产(哲学) 超材料 光电子学 认识论 哲学
作者
Paul P. Meyer,Colin Bonatti,Thomas Tancogne-Dejean,Dirk Mohr
出处
期刊:Materials & Design [Elsevier BV]
卷期号:223: 111175-111175 被引量:6
标识
DOI:10.1016/j.matdes.2022.111175
摘要

• Proposed a systematic way of constructing shell-lattices based on an efficient graph representation. • Determined the elastic and thermal properties of more than 43 , 000 distinct shell-lattices. • Proposed Crystal Graph Convolution Neural Network to describe the structure–property relationships. • Discovered new shell-lattice topologies that provide targeted macroscopic properties. The effective properties of metamaterials are tailored through the design of their internal structures. According to their main building block, the family of porous three-dimensional metamaterials is divided into truss-, plate- and shell-lattices. The exploration of their full design-space is hampered in practice by a lack of a systematic method to represent their topologies. Here, we demonstrate for the first time that graph models provide an effective representation of shell-lattices. This new graph representation is then leveraged to obtain deep learning-based structure–property models. Using finite element simulations, the stiffness and heat conductivity tensors are established for more than 40,000 microstructural configurations. We find that a modified crystal graph convolutional neural network model provides an accurate description of the structure–property relations. We anticipate the proposed graph-based modeling framework to be applicable to any man-made periodic microstructure, thereby enabling the design and discovery of new materials exhibiting exceptional mechanical, thermal, electrical or magnetic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜欢秋天xx_y应助付理想采纳,获得10
1秒前
海聪天宇完成签到,获得积分10
2秒前
尹尹尹发布了新的文献求助10
2秒前
桐桐应助seven采纳,获得10
3秒前
LXY完成签到,获得积分10
6秒前
8秒前
一点微光完成签到,获得积分10
9秒前
fqy发布了新的文献求助10
14秒前
15秒前
pluto应助xiaochen采纳,获得50
18秒前
super chan发布了新的文献求助10
19秒前
札七发布了新的文献求助10
21秒前
今后应助dajiejie采纳,获得10
23秒前
青椒肉丝完成签到,获得积分10
23秒前
迟大猫应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
zho应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得30
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
25秒前
Hello应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
彼方尚有荣光在完成签到 ,获得积分10
25秒前
劲秉应助科研通管家采纳,获得10
25秒前
YSM应助科研通管家采纳,获得40
25秒前
思源应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得30
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296