计算机科学
特征学习
图形
人工智能
冗余(工程)
机器学习
卷积神经网络
代表(政治)
变压器
外部数据表示
数据挖掘
理论计算机科学
操作系统
政治
物理
量子力学
电压
法学
政治学
作者
Thang Chu,Thuy Trang Nguyen,Bùi Dương Hải,Quang Huy Nguyen,Tuan Nguyen
标识
DOI:10.1109/tcbb.2022.3206888
摘要
Previous models have shown that learning drug features from their graph representation is more efficient than learning from their strings or numeric representations. Furthermore, integrating multi-omics data of cell lines increases the performance of drug response prediction. However, these models have shown drawbacks in extracting drug features from graph representation and incorporating redundancy information from multi-omics data. This paper proposes a deep learning model, GraTransDRP, to better drug representation and reduce information redundancy. First, the Graph transformer was utilized to extract the drug representation more efficiently. Next, Convolutional neural networks were used to learn the mutation, meth, and transcriptomics features. However, the dimension of transcriptomics features was up to 17737. Therefore, KernelPCA was applied to transcriptomics features to reduce the dimension and transform them into a dense presentation before putting them through the CNN model. Finally, drug and omics features were combined to predict a response value by a fully connected network. Experimental results show that our model outperforms some state-of-the-art methods, including GraphDRP and GraOmicDRP.
科研通智能强力驱动
Strongly Powered by AbleSci AI