Multiscale Progressive Segmentation Network for High-Resolution Remote Sensing Imagery

计算机科学 子网 分割 人工智能 水准点(测量) 光学(聚焦) 卷积神经网络 卷积(计算机科学) 特征(语言学) 市场细分 模式识别(心理学) 比例(比率) 图像分割 任务(项目管理) 人工神经网络 哲学 地理 管理 营销 经济 业务 大地测量学 物理 光学 量子力学 语言学 计算机安全
作者
Renlong Hang,Ping Yang,Feng Zhou,Qingshan Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:51
标识
DOI:10.1109/tgrs.2022.3207551
摘要

Semantic segmentation of high-resolution remote sensing imageries (HRSIs) is a critical task for a wide range of applications, such as precision agriculture and urban planning. Although convolutional neural networks (CNNs) have made great progress in accomplishing this task recently, there still exist some challenges to address, one of which is simultaneously segmenting objects with large scale variations in a HRSI. Targeting at this challenge, previous CNNs often adopt multiple convolution kernels in one layer or skip-layer connections between different layers to extract multiscale representations. However, due to the limited learning capacity of each CNN, it tends to make trade-offs in segmenting different-scale objects. This would lead to unsatisfactory segmentation results for some objects, especially the small or the large ones. In this paper, we propose a multiscale progressive segmentation network to address this issue. Instead of forcing one network to deal with all scales of objects, our network attempts to cascade three subnetworks for gradually segmenting objects with small scales, large scales, and other scales. In order to make the subnetwork focus on the specific scale objects, a scale guidance module is designed. It takes advantage of segmentation results from the preceding subnetwork to guide the feature learning of the succeeding one. Additionally, to acquire the final segmentation results, we propose a position sensitive module for adaptively combining the outputs of the three subnetworks. This module is capable of assigning combination weights of different subnetworks according to their importance. Experiments on two benchmark datasets named Vaihingen and Potsdam indicate that our proposed network can achieve considerable improvements in comparison with several state-of-the-art segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助综述王采纳,获得10
3秒前
knowledge159发布了新的文献求助10
4秒前
彭于彦祖应助what采纳,获得20
4秒前
赫连涵柏完成签到,获得积分10
5秒前
阿治发布了新的文献求助10
5秒前
脑洞疼应助笑傲采纳,获得10
7秒前
马俣辰完成签到,获得积分10
9秒前
溜了溜了发布了新的文献求助20
9秒前
领导范儿应助优雅的听兰采纳,获得10
10秒前
马俣辰发布了新的文献求助20
11秒前
11秒前
oceanao应助唠叨的月光采纳,获得10
12秒前
笑笑丶不爱笑完成签到,获得积分10
12秒前
13秒前
haowu发布了新的文献求助10
14秒前
kise发布了新的文献求助10
14秒前
体贴静竹完成签到 ,获得积分10
17秒前
sdysdbd完成签到,获得积分10
17秒前
17秒前
英俊的铭应助赵先森采纳,获得10
19秒前
Sunyfox发布了新的文献求助10
19秒前
20秒前
sparks完成签到 ,获得积分10
20秒前
十八完成签到,获得积分10
20秒前
坏苹果完成签到,获得积分10
22秒前
knowledge159完成签到,获得积分20
25秒前
27秒前
坏苹果发布了新的文献求助10
28秒前
WYP完成签到,获得积分20
29秒前
30秒前
h41692011发布了新的文献求助10
30秒前
31秒前
DY完成签到,获得积分10
32秒前
33秒前
33秒前
赵先森发布了新的文献求助10
34秒前
xu发布了新的文献求助10
35秒前
35秒前
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228