亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling phytoremediation of heavy metal contaminated soils through machine learning

植物修复 污染 土壤水分 土壤污染 重金属 环境科学 植物提取工艺 废物管理 环境化学 环境工程 采矿工程 超量积累植物 工程类 化学 土壤科学 生态学 生物
作者
Liang Shi,Jie Li,Kumuduni Niroshika Palansooriya,Yahua Chen,Deyi Hou,Erik Meers,Daniel C.W. Tsang,Xiaonan Wang,Yong Sik Ok
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:441: 129904-129904 被引量:66
标识
DOI:10.1016/j.jhazmat.2022.129904
摘要

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助科研通管家采纳,获得10
40秒前
Z小姐完成签到 ,获得积分10
41秒前
梨梨lilili完成签到,获得积分20
47秒前
JamesPei应助cacaldon采纳,获得10
53秒前
研友_VZG7GZ应助梨梨lilili采纳,获得30
1分钟前
cacaldon完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
筱灬发布了新的文献求助20
1分钟前
1分钟前
1分钟前
梨梨lilili发布了新的文献求助30
1分钟前
科研通AI2S应助serena0_0采纳,获得10
1分钟前
1分钟前
ccc完成签到 ,获得积分10
1分钟前
斯文败类应助梨梨lilili采纳,获得10
2分钟前
2分钟前
3分钟前
执着夏山发布了新的文献求助10
3分钟前
3分钟前
uikymh完成签到 ,获得积分0
3分钟前
4分钟前
李伟发布了新的文献求助10
4分钟前
4分钟前
皎皎完成签到,获得积分10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
cjx完成签到,获得积分10
5分钟前
5分钟前
5分钟前
henrychyeung发布了新的文献求助10
5分钟前
皎皎发布了新的文献求助10
5分钟前
6分钟前
6分钟前
包佳梁完成签到,获得积分10
6分钟前
henrychyeung完成签到,获得积分10
6分钟前
7分钟前
7分钟前
筱灬发布了新的文献求助10
7分钟前
7分钟前
狂野乌冬面完成签到 ,获得积分10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527