A secure healthcare 5.0 system based on blockchain technology entangled with federated learning technique

计算机科学 软件部署 块链 医疗保健 计算机安全 互联网 大数据 保密 钥匙(锁) 互联网隐私 万维网 数据挖掘 经济 经济增长 操作系统
作者
Abdur Rehman,Sagheer Abbas,Muhammad Adnan Khan,Taher M. Ghazal,Muhammad Adnan Khan,Amir Mosavi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106019-106019 被引量:94
标识
DOI:10.1016/j.compbiomed.2022.106019
摘要

In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases. The proposed system demonstrates that the approach is optimized effectively for healthcare monitoring. In contrast, the proposed healthcare 5.0 system entangled with FL Approach achieves 93.22% accuracy for disease prediction, and the proposed RTS-DELM-based secure healthcare 5.0 system achieves 96.18% accuracy for the estimation of intrusion detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助impgod采纳,获得10
刚刚
duohongrui发布了新的文献求助10
刚刚
snail01完成签到,获得积分10
刚刚
kaka完成签到,获得积分10
1秒前
muliushang完成签到 ,获得积分10
1秒前
2秒前
wang发布了新的文献求助10
2秒前
小高完成签到,获得积分10
2秒前
呵呵哒发布了新的文献求助10
3秒前
转生成为科研糕手完成签到,获得积分10
3秒前
治愈发布了新的文献求助10
4秒前
4秒前
金妖靜发布了新的文献求助10
5秒前
沉静海安完成签到 ,获得积分10
5秒前
Ya完成签到,获得积分10
5秒前
恰你眉目如昨完成签到 ,获得积分10
6秒前
7秒前
8秒前
karan完成签到,获得积分10
8秒前
仁爱海莲完成签到 ,获得积分10
9秒前
9秒前
gszy1975发布了新的文献求助10
9秒前
duohongrui完成签到 ,获得积分10
9秒前
10秒前
12秒前
深情安青应助螺蛳粉采纳,获得10
13秒前
hexiang关注了科研通微信公众号
13秒前
bkagyin应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
竹筏过海应助科研通管家采纳,获得30
14秒前
SciGPT应助直立行走的乌龟采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
沈sm发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587