Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 判别式 人工智能 残余物 模式识别(心理学) 计算机科学 图形 卷积神经网络 平滑的 特征(语言学) 特征提取 保险丝(电气) 计算机视觉 算法 哲学 工程类 电气工程 理论计算机科学 语言学
作者
Rong Chen,Guanghui Li,Chenglong Dai
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:7
标识
DOI:10.1109/lgrs.2022.3192832
摘要

Recently, graph convolutional network (GCN) has been applied for hyperspectral image (HSI) classification and obtained better performance. The main issue in HSI classification is that the high-resolution HSI contains more complex spectral-spatial structure information. However, the previous GCN-based methods applied in HSI classification only adopted a shallow GCN layer and they can not extract the deeper discriminative features. In addition, these methods ignored the complementary and correlated information among multi-order neighboring information extracted by multiple GCN layers. In this letter, a novel feature fusion via deep residual graph convolutional network is proposed to explore the internal relationship among HSI data. On the one hand, benefiting from residual learning to alleviate the over-smoothing problem, we can construct deep GCN layers to excavate deeper abstract features of HSI. On the other hand, we fuse the outputs of different GCN layers, and thus, the local structural information within multi-order neighborhood nodes can be fully utilized. Extensive experiments on four real HSI data sets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the superiority of the proposed method compared with other state-of-the-art methods in various evaluation criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuuuuu应助宝海青采纳,获得10
1秒前
acorn完成签到,获得积分10
3秒前
火星上的羽毛应助长度2到采纳,获得10
4秒前
潇洒应助mzf采纳,获得10
4秒前
N型半导体发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
djiwisksk66应助shinn采纳,获得10
7秒前
paojiao完成签到,获得积分10
8秒前
gslsx409完成签到,获得积分10
8秒前
兴奋渊思完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
甜甜谷波发布了新的文献求助10
10秒前
细腻飞鸟发布了新的文献求助10
10秒前
10秒前
xywang完成签到,获得积分10
11秒前
DrW1111发布了新的文献求助30
12秒前
Phy发布了新的文献求助10
13秒前
眼睛大雨筠应助小星星采纳,获得30
16秒前
yznfly应助小星星采纳,获得30
16秒前
16秒前
17秒前
18秒前
18秒前
19秒前
KONGBAI完成签到,获得积分10
21秒前
try发布了新的文献求助10
21秒前
111完成签到,获得积分20
22秒前
走四方应助goufufu采纳,获得20
22秒前
一棵草发布了新的文献求助10
22秒前
兴奋大马喽完成签到,获得积分10
24秒前
24秒前
24秒前
Lxt完成签到,获得积分10
26秒前
只剩下55发布了新的文献求助10
27秒前
早坂爱发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303