Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 判别式 人工智能 残余物 模式识别(心理学) 计算机科学 图形 卷积神经网络 平滑的 特征(语言学) 特征提取 保险丝(电气) 计算机视觉 算法 哲学 工程类 电气工程 理论计算机科学 语言学
作者
Rong Chen,Guanghui Li,Chenglong Dai
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2022.3192832
摘要

Recently, graph convolutional network (GCN) has been applied for hyperspectral image (HSI) classification and obtained better performance. The main issue in HSI classification is that the high-resolution HSI contains more complex spectral-spatial structure information. However, the previous GCN-based methods applied in HSI classification only adopted a shallow GCN layer and they can not extract the deeper discriminative features. In addition, these methods ignored the complementary and correlated information among multi-order neighboring information extracted by multiple GCN layers. In this letter, a novel feature fusion via deep residual graph convolutional network is proposed to explore the internal relationship among HSI data. On the one hand, benefiting from residual learning to alleviate the over-smoothing problem, we can construct deep GCN layers to excavate deeper abstract features of HSI. On the other hand, we fuse the outputs of different GCN layers, and thus, the local structural information within multi-order neighborhood nodes can be fully utilized. Extensive experiments on four real HSI data sets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the superiority of the proposed method compared with other state-of-the-art methods in various evaluation criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang完成签到,获得积分10
1秒前
果酱君完成签到,获得积分10
1秒前
1秒前
2秒前
zzz发布了新的文献求助10
2秒前
kingwill应助江南烟雨如笙采纳,获得20
3秒前
3秒前
zrk发布了新的文献求助10
3秒前
小毕可乐完成签到,获得积分10
4秒前
zc19891130完成签到,获得积分10
4秒前
烟花应助晗仔采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
小蘑菇应助zhui采纳,获得10
6秒前
6秒前
虚心的冷雪完成签到,获得积分20
7秒前
科研小白发布了新的文献求助10
7秒前
苹果萧发布了新的文献求助10
8秒前
zhihan发布了新的文献求助10
9秒前
Hao发布了新的文献求助10
9秒前
9秒前
Orange应助贾不可采纳,获得10
9秒前
李健的小迷弟应助贾不可采纳,获得10
9秒前
FashionBoy应助贾不可采纳,获得10
9秒前
奋斗的夜山完成签到 ,获得积分10
9秒前
yana发布了新的文献求助20
9秒前
yijiubingshi完成签到,获得积分10
10秒前
苏南完成签到 ,获得积分10
10秒前
冰激凌UP发布了新的文献求助10
10秒前
SCI发布了新的文献求助10
10秒前
CD发布了新的文献求助10
10秒前
11秒前
yan123发布了新的文献求助10
12秒前
12秒前
充电宝应助yyj采纳,获得10
12秒前
马静雨发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794