Tensor-Based Sparse Recovery Space-Time Adaptive Processing for Large Size Data Clutter Suppression in Airborne Radar

杂乱 空时自适应处理 计算机科学 雷达 算法 张量(固有定义) 计算复杂性理论 稀疏矩阵 基质(化学分析) 稀疏逼近 雷达成像 雷达工程细节 数学 物理 电信 量子力学 复合材料 高斯分布 材料科学 纯数学
作者
Ning Cui,Kun Xing,Zhongjun Yu,Keqing Duan
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:3
标识
DOI:10.1109/taes.2022.3192223
摘要

Sparse recovery space-time adaptive processing (SR-STAP) can achieve an ideal clutter suppression with very few training samples, however, its application faces two challenges: (i) severe gird mismatch effect; (ii) large time-resources requirement. In practice, a coarse space-time grids will bring a serious mismatch between the true clutter points and the divided grids, which leads to a significant performance degradation of clutter suppression. Although the high-resolution mesh can effectively reduce the grid mismatch effect, its cost is huge computational load. Thus, it is meaningful to reduce the large-scale dictionary operation complexity while maintaining suboptimal clutter suppression performance for SR-STAP when applying in real airborne radar system. This paper proposed a tensor-based SR-STAP scheme aims at large-scale dictionary application. In the proposed framework, traditional vector-based operations are replaced by their corresponding low-complexity tensor representation. As a result, a large-scale matrix operation can be degraded into multiple small-scale matrix calculation, thus the huge computational loading can be saved in recovery. A comparison of tensor-based SR-STAP and traditional vector-based SR-STAP in large-scale dictionary application is also exhaustive discussed here. Based on this framework, a tensor-based sparse Bayesian learning and its fast matrix-realization form are developed. A series of carefully designed numerical simulation and measurement experiments indicate that the significant advantages of the tensor-based SR-STAP whether in performance or computation loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
笑啦啦完成签到,获得积分10
4秒前
333cu发布了新的文献求助10
4秒前
毛毛发布了新的文献求助10
5秒前
journey完成签到 ,获得积分10
6秒前
大森发布了新的文献求助10
6秒前
快乐佳人完成签到,获得积分10
9秒前
ding应助hhhheyyyyo采纳,获得10
10秒前
to高坚果发布了新的文献求助10
14秒前
JamesPei应助shinn采纳,获得10
15秒前
一川完成签到,获得积分10
15秒前
领导范儿应助333cu采纳,获得10
15秒前
17秒前
英俊的铭应助画晴采纳,获得10
18秒前
19秒前
Bryan应助Focus_BG采纳,获得10
20秒前
20秒前
香精完成签到,获得积分10
21秒前
23秒前
毛毛完成签到,获得积分10
23秒前
细腻笑卉发布了新的文献求助10
24秒前
333cu完成签到,获得积分10
26秒前
迷路岩发布了新的文献求助10
27秒前
29秒前
30秒前
科研Cat发布了新的文献求助10
31秒前
32秒前
yx_cheng应助shinn采纳,获得10
32秒前
32秒前
33秒前
叶小文完成签到,获得积分20
34秒前
张张张完成签到,获得积分10
34秒前
夜影阑珊发布了新的文献求助10
35秒前
ldy完成签到,获得积分10
35秒前
35秒前
娜娜发布了新的文献求助10
36秒前
39秒前
qinjiayin发布了新的文献求助10
40秒前
sunday完成签到 ,获得积分20
40秒前
杰哥完成签到 ,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450