Tensor-Based Sparse Recovery Space-Time Adaptive Processing for Large Size Data Clutter Suppression in Airborne Radar

杂乱 空时自适应处理 计算机科学 雷达 算法 张量(固有定义) 计算复杂性理论 稀疏矩阵 基质(化学分析) 稀疏逼近 雷达成像 雷达工程细节 数学 物理 电信 量子力学 复合材料 高斯分布 材料科学 纯数学
作者
Ning Cui,Kun Xing,Zhongjun Yu,Keqing Duan
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:3
标识
DOI:10.1109/taes.2022.3192223
摘要

Sparse recovery space-time adaptive processing (SR-STAP) can achieve an ideal clutter suppression with very few training samples, however, its application faces two challenges: (i) severe gird mismatch effect; (ii) large time-resources requirement. In practice, a coarse space-time grids will bring a serious mismatch between the true clutter points and the divided grids, which leads to a significant performance degradation of clutter suppression. Although the high-resolution mesh can effectively reduce the grid mismatch effect, its cost is huge computational load. Thus, it is meaningful to reduce the large-scale dictionary operation complexity while maintaining suboptimal clutter suppression performance for SR-STAP when applying in real airborne radar system. This paper proposed a tensor-based SR-STAP scheme aims at large-scale dictionary application. In the proposed framework, traditional vector-based operations are replaced by their corresponding low-complexity tensor representation. As a result, a large-scale matrix operation can be degraded into multiple small-scale matrix calculation, thus the huge computational loading can be saved in recovery. A comparison of tensor-based SR-STAP and traditional vector-based SR-STAP in large-scale dictionary application is also exhaustive discussed here. Based on this framework, a tensor-based sparse Bayesian learning and its fast matrix-realization form are developed. A series of carefully designed numerical simulation and measurement experiments indicate that the significant advantages of the tensor-based SR-STAP whether in performance or computation loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芦苇秋完成签到 ,获得积分10
2秒前
2秒前
所所应助帅比杨哥采纳,获得10
4秒前
r_ringaaa发布了新的文献求助10
4秒前
4秒前
5秒前
英俊的铭应助dungaway采纳,获得10
5秒前
子小雨记发布了新的文献求助10
7秒前
7秒前
久久丫完成签到 ,获得积分10
8秒前
8秒前
香蕉觅云应助yumi采纳,获得10
9秒前
科目三应助淡定的饼干采纳,获得10
12秒前
iWatchTheMoon应助YYY666采纳,获得10
12秒前
SOBER发布了新的文献求助10
13秒前
14秒前
久久丫关注了科研通微信公众号
14秒前
无语的如音完成签到,获得积分10
14秒前
rrrick发布了新的文献求助10
15秒前
16秒前
Ava应助haowu采纳,获得10
16秒前
斯文败类应助haowu采纳,获得10
16秒前
我是老大应助haowu采纳,获得10
16秒前
赘婿应助haowu采纳,获得10
17秒前
Singularity应助haowu采纳,获得10
17秒前
oceanao应助haowu采纳,获得10
17秒前
Singularity应助haowu采纳,获得10
17秒前
oceanao应助haowu采纳,获得10
17秒前
充电宝应助haowu采纳,获得10
17秒前
oceanao应助haowu采纳,获得10
17秒前
叉叉茶完成签到 ,获得积分10
18秒前
帅比杨哥发布了新的文献求助10
18秒前
yadi完成签到,获得积分10
19秒前
apple9515发布了新的文献求助10
19秒前
科研通AI2S应助yaoyh_gc采纳,获得10
19秒前
听白完成签到 ,获得积分10
20秒前
dungaway发布了新的文献求助10
21秒前
22秒前
CipherSage应助Diana采纳,获得10
23秒前
科研通AI2S应助yadi采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187