纳米载体
血脑屏障
微气泡
聚焦超声
药物输送
生物相容性材料
化学
药理学
超声波
医学
纳米技术
生物医学工程
中枢神经系统
材料科学
内科学
放射科
作者
Charlotte Bérard,Stéphane Desgranges,Noé Dumas,Anthony Novell,Benoît Larrat,Mourad Hamimed,Nicolas Taulier,Marie‐Anne Estève,Florian Corréard,Christine Contino-Pepin
出处
期刊:Pharmaceutics
[MDPI AG]
日期:2022-07-19
卷期号:14 (7): 1498-1498
被引量:12
标识
DOI:10.3390/pharmaceutics14071498
摘要
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood-brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood-brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood-brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice' bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood-brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI