Impact of the Drying Temperature during Catalyst Layer Manufacturing on PEM Fuel Cell Performance

化学工程 材料科学 质子交换膜燃料电池 离聚物 催化作用 差示扫描量热法 Nafion公司 聚合物 蒸发 电解质 溶剂 图层(电子) 复合材料 涂层 化学 有机化学 电化学 共聚物 物理化学 工程类 物理 热力学 电极
作者
Linda Ney,Jean-Luc Wolken,Rajveer Singh,Patrick David Schneider,Roman Keding,Forian Clement,Matthias Klingele
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (35): 1422-1422
标识
DOI:10.1149/ma2022-01351422mtgabs
摘要

The manufacturing process of catalyst coated membranes for polymer electrolyte fuel cells (PEMFC) needs to be transferred to high throughput mass production to meet the increasing demand on the market. After the coating of the catalyst ink, the drying temperature and its profile can change the pore structure and crack appearance of the catalyst layer by influencing the solvent evaporation [1]. Therefore, adjusting the drying parameters to the type of solvents within the catalyst ink can result in beneficial performance gain. Often solvents with low boiling points like isopropanol-water mixtures are used. The rapid evaporation of these solvents could lead to crack formation, which could be avoided by the usage of high boiling point solvents like e.g. ethylene glycol [2,3]. Therefore higher drying temperatures are necessary to ensure a complete removal of the wet components. This leads to the question of the maximum drying temperature which can be applied to speed up the drying process as much as possible. The most temperature sensitive component within the catalyst layer is the ionomer. Drying at high temperatures could lead to degradation and decomposition of the ionomer network within the catalyst layer. However, is the temperature too low, the necessary drying time increases, which would result in higher investment costs for longer drying process lines. Within this study we investigated at first the thermal behavior of short side chain (Aquivion®) and long side chain (Nafion™) ionomer dispersions to analyze their glass transition and melting temperatures with differential scanning calorimetry in the range of 30-400°C. The findings are shown in Figure 1. The glass transition temperature of Aquivion® lies between 154-159°C, whereas Nafion™ is more temperature sensitive with 125-142°C, which is consistent with the literature. In a second step, catalyst layers have been fabricated by screen printing with a catalyst paste including a solvent mixture of ethylene glycol and 1-methoxy-2-propanol [4]. The resulting catalyst layers have platinum loadings of 0.154 mg/cm² on the cathode and 0.05 mg/cm² on the anode side. The drying temperature has been varied between 22°C (ambient air temperature), 110°C, 150°C, 180°C, 200°C and 250°C within a continuous convection dryer. Further, different drying profiles have been applied by comparing to hot plate drying method. All other process parameters have been kept constant. The catalyst layers with different drying temperatures have been tested in-situ by electrochemical operation of the MEA. For Aquivion® as ionomer, the polarization curves are shown in Figure 2 and indicate that drying temperatures above 150°C (glass transition temperature) would lead to significant current density losses at wet and dry conditions. Furthermore, there doesn’t seem to be an optimum drying temperature below the glass transition temperature. Therefore, the best compromise of production throughput and electrochemical performance is reached at a temperature of 150°C, which is near the glass transition temperature of the ionomer. [1] Park H-S, Cho Y-H, Cho Y-H, Jung CR, Jang JH, Sung Y-E. Performance enhancement of PEMFC through temperature control in catalyst layer fabrication. Electrochimica Acta 2007;53(2):763–7. [2] Huang D-C, Yu P-J, Liu F-J, Huang S-L, Hsueh K-L, Chen Y-C et al. Effect of Dispersion Solvent in Catalyst Ink on Proton Exchange Membrane Fuel Cell Performance. Int. J. Electrochem. Sci. International Journal 2011;6:2551–65. [3] Hasegawa N, Kamiya A, Matsunaga T, Kitano N, Harada M. Analysis of crack formation during fuel cell catalyst ink drying process. Reduction of catalyst layer cracking by addition of high boiling point solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021:127153. [4] Alink R, Singh R, Schneider P, Christmann K, Schall J, Keding R et al. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Molecules (Basel, Switzerland) 2020;25(7). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朵玲完成签到,获得积分10
2秒前
3秒前
3秒前
ppg123应助魔幻安筠采纳,获得10
3秒前
SYLH应助魔幻安筠采纳,获得10
3秒前
4秒前
起名发布了新的文献求助10
4秒前
5秒前
iW发布了新的文献求助10
5秒前
pinging完成签到,获得积分10
6秒前
you完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
贝贝贝完成签到,获得积分10
6秒前
lw完成签到,获得积分20
7秒前
wanci应助优秀的乐曲采纳,获得10
7秒前
沐晴发布了新的文献求助10
7秒前
qiao发布了新的文献求助10
7秒前
小梁今天也要努力呀完成签到 ,获得积分10
7秒前
7秒前
木笔朱瑾完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
esbd完成签到,获得积分10
8秒前
kk发布了新的文献求助10
8秒前
开放磬完成签到,获得积分10
8秒前
8秒前
nuan77完成签到,获得积分10
9秒前
深情未来完成签到,获得积分10
9秒前
ccalvintan发布了新的文献求助10
9秒前
11秒前
annoraz完成签到,获得积分10
11秒前
lier发布了新的文献求助10
11秒前
共享精神应助饕餮采纳,获得10
11秒前
开朗黑猫完成签到 ,获得积分10
12秒前
八月中稿完成签到 ,获得积分10
12秒前
aaaaa发布了新的文献求助20
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620