Efficient Fused-Attention Model for Steel Surface Defect Detection

判别式 保险丝(电气) 特征(语言学) 计算机科学 人工智能 目标检测 模式识别(心理学) 光学(聚焦) 特征提取 频道(广播) 工程类 电气工程 光学 物理 哲学 语言学 计算机网络
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:67
标识
DOI:10.1109/tim.2022.3176239
摘要

Steel surface defect detection is an essential quality control task in manufacturing. As patterns of defects may be viewed as an object, some current defect detection methods, which have achieved promising performance, have been developed based on object-detection models. However, most of these defect detection methods simply incorporate additional heavy modules to improve the accuracy. These methods do not consider the efficiency of the models or the characteristics of the defects. In this paper, we focus on three challenges of steel surface defect detection, which are scale variations, shape variations, and detection efficiency. To address these challenges, we propose a fused-attention network (FANet) for detecting various steel surface defects. Specifically, we propose a fused-attention framework for efficiently detecting defects. This framework applies an attention mechanism to a single balanced feature map, rather than multiple feature maps. This can improve the accuracy and preserve the detection speed of the detection network. To handle defects with multiple scales, we propose an adaptively balanced feature fusion (ABFF) method that can fuse features with suitable weights. It can enhance the discriminative power of the feature maps for detecting defects of different scales. Moreover, we propose a fused-attention module (FAM) to deal with the shape variations of defects. This module can enhance the channel and spatial feature information to perform precise localization and classification of defects with shape variations. Experimental results on two steel surface defect detection datasets, NEU-DET and GC10-DET, demonstrate that our proposed method can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思齐发布了新的文献求助10
刚刚
Eliza_666完成签到,获得积分10
1秒前
1秒前
失眠的血茗完成签到,获得积分10
1秒前
高高完成签到,获得积分10
1秒前
2秒前
专注的飞瑶完成签到 ,获得积分10
2秒前
MOJITO发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
jack发布了新的文献求助10
6秒前
王相博发布了新的文献求助10
6秒前
一叶知秋完成签到,获得积分20
7秒前
7秒前
小七发布了新的文献求助10
8秒前
qsh完成签到 ,获得积分10
8秒前
赵帅完成签到,获得积分10
9秒前
Jasper应助LIU采纳,获得10
9秒前
sunshine完成签到 ,获得积分10
9秒前
11秒前
果果完成签到,获得积分10
11秒前
ff完成签到,获得积分10
12秒前
马里奥爱科研完成签到,获得积分10
12秒前
我欲成粉绿完成签到,获得积分10
12秒前
13秒前
Orange应助lilysmile001采纳,获得10
13秒前
wanci应助廖彬彬采纳,获得10
14秒前
leslie发布了新的文献求助10
14秒前
林橙发布了新的文献求助10
14秒前
清新的冰凡完成签到,获得积分10
14秒前
SciGPT应助卛e采纳,获得10
15秒前
mj发布了新的文献求助10
15秒前
Nero29完成签到,获得积分10
16秒前
枫泾发布了新的文献求助30
18秒前
打工肥仔应助liman采纳,获得10
18秒前
慕容雅柏完成签到 ,获得积分10
18秒前
灵儿完成签到,获得积分10
18秒前
冷静远望完成签到,获得积分10
18秒前
梓榆完成签到 ,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951