已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Fused-Attention Model for Steel Surface Defect Detection

判别式 保险丝(电气) 特征(语言学) 计算机科学 人工智能 目标检测 模式识别(心理学) 光学(聚焦) 特征提取 频道(广播) 工程类 电气工程 光学 物理 哲学 语言学 计算机网络
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:95
标识
DOI:10.1109/tim.2022.3176239
摘要

Steel surface defect detection is an essential quality control task in manufacturing. As patterns of defects may be viewed as an object, some current defect detection methods, which have achieved promising performance, have been developed based on object-detection models. However, most of these defect detection methods simply incorporate additional heavy modules to improve the accuracy. These methods do not consider the efficiency of the models or the characteristics of the defects. In this paper, we focus on three challenges of steel surface defect detection, which are scale variations, shape variations, and detection efficiency. To address these challenges, we propose a fused-attention network (FANet) for detecting various steel surface defects. Specifically, we propose a fused-attention framework for efficiently detecting defects. This framework applies an attention mechanism to a single balanced feature map, rather than multiple feature maps. This can improve the accuracy and preserve the detection speed of the detection network. To handle defects with multiple scales, we propose an adaptively balanced feature fusion (ABFF) method that can fuse features with suitable weights. It can enhance the discriminative power of the feature maps for detecting defects of different scales. Moreover, we propose a fused-attention module (FAM) to deal with the shape variations of defects. This module can enhance the channel and spatial feature information to perform precise localization and classification of defects with shape variations. Experimental results on two steel surface defect detection datasets, NEU-DET and GC10-DET, demonstrate that our proposed method can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangai1011应助Tracy采纳,获得10
3秒前
雨相所至发布了新的文献求助10
3秒前
上好佳完成签到,获得积分10
5秒前
NattyPoe发布了新的文献求助10
5秒前
7秒前
xiaofeiyan发布了新的文献求助10
13秒前
JiegeSCI完成签到,获得积分10
13秒前
19秒前
夕夕成玦完成签到 ,获得积分10
19秒前
orixero应助啵啵小柚子采纳,获得10
20秒前
尹宝发布了新的文献求助10
23秒前
黄昏完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
英姑应助TTTYL采纳,获得30
25秒前
nanwan完成签到,获得积分10
25秒前
26秒前
27秒前
CodeCraft应助PanLi采纳,获得10
27秒前
27秒前
messi0731发布了新的文献求助10
28秒前
zhzhzh发布了新的文献求助10
29秒前
YTL2021完成签到,获得积分10
30秒前
tttt完成签到 ,获得积分10
30秒前
头上有犄角bb完成签到 ,获得积分10
31秒前
超超~完成签到,获得积分10
33秒前
33秒前
genomed应助xiekunwhy采纳,获得10
33秒前
33秒前
34秒前
会飞的猪发布了新的文献求助10
37秒前
着急的若魔完成签到,获得积分10
37秒前
xiaofeiyan发布了新的文献求助10
37秒前
37秒前
灵巧凡梅发布了新的文献求助30
37秒前
Shawn完成签到,获得积分10
37秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702