亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Fused-Attention Model for Steel Surface Defect Detection

判别式 保险丝(电气) 特征(语言学) 计算机科学 人工智能 目标检测 模式识别(心理学) 光学(聚焦) 特征提取 频道(广播) 工程类 计算机网络 语言学 哲学 物理 光学 电气工程
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:95
标识
DOI:10.1109/tim.2022.3176239
摘要

Steel surface defect detection is an essential quality control task in manufacturing. As patterns of defects may be viewed as an object, some current defect detection methods, which have achieved promising performance, have been developed based on object-detection models. However, most of these defect detection methods simply incorporate additional heavy modules to improve the accuracy. These methods do not consider the efficiency of the models or the characteristics of the defects. In this paper, we focus on three challenges of steel surface defect detection, which are scale variations, shape variations, and detection efficiency. To address these challenges, we propose a fused-attention network (FANet) for detecting various steel surface defects. Specifically, we propose a fused-attention framework for efficiently detecting defects. This framework applies an attention mechanism to a single balanced feature map, rather than multiple feature maps. This can improve the accuracy and preserve the detection speed of the detection network. To handle defects with multiple scales, we propose an adaptively balanced feature fusion (ABFF) method that can fuse features with suitable weights. It can enhance the discriminative power of the feature maps for detecting defects of different scales. Moreover, we propose a fused-attention module (FAM) to deal with the shape variations of defects. This module can enhance the channel and spatial feature information to perform precise localization and classification of defects with shape variations. Experimental results on two steel surface defect detection datasets, NEU-DET and GC10-DET, demonstrate that our proposed method can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜安发布了新的文献求助10
刚刚
RylNG发布了新的文献求助10
2秒前
Eusha完成签到,获得积分10
6秒前
RylNG完成签到,获得积分10
12秒前
charitial完成签到,获得积分10
32秒前
40秒前
44秒前
51秒前
53秒前
李健应助孤独的送终采纳,获得10
59秒前
科研通AI6.1应助科研通管家采纳,获得200
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
长言完成签到 ,获得积分10
1分钟前
飞常爱你哦完成签到,获得积分10
1分钟前
ok发布了新的文献求助10
1分钟前
研友_VZG7GZ应助meiyi采纳,获得10
1分钟前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
jiangx完成签到,获得积分10
2分钟前
2分钟前
手可摘星陈同学完成签到 ,获得积分10
2分钟前
jiangx发布了新的文献求助10
2分钟前
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
啵子发布了新的文献求助10
3分钟前
丘比特应助ok采纳,获得10
3分钟前
3分钟前
我是老大应助六子采纳,获得10
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
1234发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379