亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Fused-Attention Model for Steel Surface Defect Detection

判别式 保险丝(电气) 特征(语言学) 计算机科学 人工智能 目标检测 模式识别(心理学) 光学(聚焦) 特征提取 频道(广播) 工程类 电气工程 光学 物理 哲学 语言学 计算机网络
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:95
标识
DOI:10.1109/tim.2022.3176239
摘要

Steel surface defect detection is an essential quality control task in manufacturing. As patterns of defects may be viewed as an object, some current defect detection methods, which have achieved promising performance, have been developed based on object-detection models. However, most of these defect detection methods simply incorporate additional heavy modules to improve the accuracy. These methods do not consider the efficiency of the models or the characteristics of the defects. In this paper, we focus on three challenges of steel surface defect detection, which are scale variations, shape variations, and detection efficiency. To address these challenges, we propose a fused-attention network (FANet) for detecting various steel surface defects. Specifically, we propose a fused-attention framework for efficiently detecting defects. This framework applies an attention mechanism to a single balanced feature map, rather than multiple feature maps. This can improve the accuracy and preserve the detection speed of the detection network. To handle defects with multiple scales, we propose an adaptively balanced feature fusion (ABFF) method that can fuse features with suitable weights. It can enhance the discriminative power of the feature maps for detecting defects of different scales. Moreover, we propose a fused-attention module (FAM) to deal with the shape variations of defects. This module can enhance the channel and spatial feature information to perform precise localization and classification of defects with shape variations. Experimental results on two steel surface defect detection datasets, NEU-DET and GC10-DET, demonstrate that our proposed method can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助现代的如霜采纳,获得10
2秒前
2秒前
Cheung2121发布了新的文献求助30
8秒前
Hello应助Lewis采纳,获得10
18秒前
ani完成签到,获得积分10
30秒前
42秒前
42秒前
detective发布了新的文献求助10
46秒前
四斤瓜完成签到 ,获得积分10
53秒前
科研通AI6应助detective采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
detective完成签到,获得积分10
1分钟前
平常念蕾关注了科研通微信公众号
1分钟前
xiaozhang发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
平常念蕾发布了新的文献求助10
1分钟前
小二郎应助鲜艳的手链采纳,获得10
1分钟前
callmekar发布了新的文献求助10
1分钟前
侯海察完成签到,获得积分10
1分钟前
lingyun4592发布了新的文献求助10
1分钟前
1分钟前
浮游应助callmekar采纳,获得10
1分钟前
1分钟前
1分钟前
Ava应助lingyun4592采纳,获得10
1分钟前
elliotzzz发布了新的文献求助10
1分钟前
星辰大海应助现代的如霜采纳,获得10
2分钟前
jikngsk发布了新的文献求助10
2分钟前
2分钟前
Raunio完成签到,获得积分10
2分钟前
franklin_fsz应助smile采纳,获得30
2分钟前
smile完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211