亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Super-resolution reconstruction of magnetic resonance images based on multi-scale feature extraction Super-Resolution Convolution Neural Network

人工智能 特征提取 计算机科学 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 迭代重建 人工神经网络 卷积神经网络 联营 图像分辨率 计算机视觉 语言学 哲学
作者
Wei Wang,Rui Feng,XiuHan Li,Junxiao Yu,Da Cao,YiShuo Li,Xiaoling Wu
出处
期刊:Digital medicine [Medknow Publications]
卷期号:8: 11-11
标识
DOI:10.4103/digm.digm_43_21
摘要

Background: Low-resolution magnetic resonance imaging (MRI) has high imaging speed, but the image details cannot meet the needs of clinical diagnosis. More and more researchers are interested in neural network-based reconstruction methods. How to effectively process the super-resolution reconstruction of the low-resolution images has become highly valuable in clinical applications. Methods: We introduced Super-Resolution Convolution Neural Network (SRCNN) into the reconstruction of magnetic resonance images. The SRCNN consists of three layers, the image feature extraction layer, the nonlinear mapping layer, and the reconstruction layer. For the feature extraction layer, a multi-scale feature extraction (MFE) method was used to extract the features in different scales by involving three different levels of views, which is superior to the original feature extraction in views with fixed size. Compared with the original feature extraction only in fixed size views, we used three different levels of views to extract the features of different scales. This MFE could also be combined with residual learning to improve the performance of MRI super-resolution reconstruction. The proposed network is an end-to-end architecture. Therefore, no manual intervention or multi-stage calculation is required in practical applications. The structure of the network is extremely simple by omitting the fully connected layers and the pooling layers from traditional Convolution Neural Network. Results and Conclusions: After comparative experiments, the effectiveness of the MFE SRCNN-based network in super-resolution reconstruction of MR images has been greatly improved. The performance is significantly improved in terms of evaluation indexes peak signal-to-noise ratio and structural similarity index measure, and the detail recovery of images is also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy完成签到 ,获得积分10
1秒前
4秒前
5秒前
luang完成签到,获得积分10
7秒前
个性慕青完成签到 ,获得积分10
11秒前
丘丘完成签到,获得积分10
11秒前
RRRZZ完成签到 ,获得积分10
19秒前
习习完成签到,获得积分10
19秒前
所所应助小真白采纳,获得10
20秒前
科研通AI2S应助内向的小脑采纳,获得10
23秒前
mingli的tau发布了新的文献求助10
28秒前
科研通AI5应助LJ_scholar采纳,获得10
31秒前
34秒前
yf完成签到,获得积分10
34秒前
yf发布了新的文献求助10
40秒前
七草肃完成签到,获得积分10
43秒前
Hexagram完成签到 ,获得积分10
44秒前
Jasper应助ceeray23采纳,获得20
44秒前
张牧之完成签到 ,获得积分10
46秒前
哈哈哈大赞完成签到,获得积分10
48秒前
打打应助yf采纳,获得10
50秒前
52秒前
YoungJC66发布了新的文献求助10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
轻松的惜芹应助3719left采纳,获得10
1分钟前
狮子清明尊完成签到,获得积分10
1分钟前
高高烙发布了新的文献求助10
1分钟前
河狸上校完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
3719left完成签到,获得积分10
1分钟前
1分钟前
邹醉蓝完成签到,获得积分0
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532068
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216