Super-resolution reconstruction of magnetic resonance images based on multi-scale feature extraction Super-Resolution Convolution Neural Network

人工智能 特征提取 计算机科学 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 迭代重建 人工神经网络 卷积神经网络 联营 图像分辨率 计算机视觉 哲学 语言学
作者
Wei Wang,Rui Feng,XiuHan Li,Junxiao Yu,Da Cao,YiShuo Li,Xiaoling Wu
出处
期刊:Digital medicine [Medknow Publications]
卷期号:8: 11-11
标识
DOI:10.4103/digm.digm_43_21
摘要

Background: Low-resolution magnetic resonance imaging (MRI) has high imaging speed, but the image details cannot meet the needs of clinical diagnosis. More and more researchers are interested in neural network-based reconstruction methods. How to effectively process the super-resolution reconstruction of the low-resolution images has become highly valuable in clinical applications. Methods: We introduced Super-Resolution Convolution Neural Network (SRCNN) into the reconstruction of magnetic resonance images. The SRCNN consists of three layers, the image feature extraction layer, the nonlinear mapping layer, and the reconstruction layer. For the feature extraction layer, a multi-scale feature extraction (MFE) method was used to extract the features in different scales by involving three different levels of views, which is superior to the original feature extraction in views with fixed size. Compared with the original feature extraction only in fixed size views, we used three different levels of views to extract the features of different scales. This MFE could also be combined with residual learning to improve the performance of MRI super-resolution reconstruction. The proposed network is an end-to-end architecture. Therefore, no manual intervention or multi-stage calculation is required in practical applications. The structure of the network is extremely simple by omitting the fully connected layers and the pooling layers from traditional Convolution Neural Network. Results and Conclusions: After comparative experiments, the effectiveness of the MFE SRCNN-based network in super-resolution reconstruction of MR images has been greatly improved. The performance is significantly improved in terms of evaluation indexes peak signal-to-noise ratio and structural similarity index measure, and the detail recovery of images is also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
搞怪莫茗发布了新的文献求助10
1秒前
搞怪莫茗发布了新的文献求助10
1秒前
搞怪莫茗发布了新的文献求助10
1秒前
搞怪莫茗发布了新的文献求助10
1秒前
搞怪莫茗发布了新的文献求助10
1秒前
HEnli发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
kyfw发布了新的文献求助10
4秒前
4秒前
慢慢的地理人完成签到,获得积分10
5秒前
5秒前
ZZ完成签到,获得积分10
7秒前
7秒前
颜绮发布了新的文献求助10
8秒前
mj完成签到,获得积分10
8秒前
星星发布了新的文献求助20
8秒前
maohui关注了科研通微信公众号
8秒前
求助完成签到 ,获得积分10
9秒前
zhang完成签到,获得积分10
9秒前
Rr完成签到,获得积分10
10秒前
10秒前
xiaxiao应助yang采纳,获得50
12秒前
小赵完成签到,获得积分10
12秒前
桐桐应助tutu采纳,获得10
12秒前
13秒前
大地发布了新的文献求助10
13秒前
14秒前
drd完成签到,获得积分10
14秒前
小雨dida发布了新的文献求助10
14秒前
15秒前
星星完成签到,获得积分10
16秒前
科研通AI2S应助Heavenyisheng采纳,获得10
17秒前
17秒前
坚强桐发布了新的文献求助30
19秒前
19秒前
刘欢发布了新的文献求助10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260