Super-resolution reconstruction of magnetic resonance images based on multi-scale feature extraction Super-Resolution Convolution Neural Network

人工智能 特征提取 计算机科学 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 迭代重建 人工神经网络 卷积神经网络 联营 图像分辨率 计算机视觉 语言学 哲学
作者
Wei Wang,Rui Feng,XiuHan Li,Junxiao Yu,Da Cao,YiShuo Li,Xiaoling Wu
出处
期刊:Digital medicine [Medknow Publications]
卷期号:8: 11-11
标识
DOI:10.4103/digm.digm_43_21
摘要

Background: Low-resolution magnetic resonance imaging (MRI) has high imaging speed, but the image details cannot meet the needs of clinical diagnosis. More and more researchers are interested in neural network-based reconstruction methods. How to effectively process the super-resolution reconstruction of the low-resolution images has become highly valuable in clinical applications. Methods: We introduced Super-Resolution Convolution Neural Network (SRCNN) into the reconstruction of magnetic resonance images. The SRCNN consists of three layers, the image feature extraction layer, the nonlinear mapping layer, and the reconstruction layer. For the feature extraction layer, a multi-scale feature extraction (MFE) method was used to extract the features in different scales by involving three different levels of views, which is superior to the original feature extraction in views with fixed size. Compared with the original feature extraction only in fixed size views, we used three different levels of views to extract the features of different scales. This MFE could also be combined with residual learning to improve the performance of MRI super-resolution reconstruction. The proposed network is an end-to-end architecture. Therefore, no manual intervention or multi-stage calculation is required in practical applications. The structure of the network is extremely simple by omitting the fully connected layers and the pooling layers from traditional Convolution Neural Network. Results and Conclusions: After comparative experiments, the effectiveness of the MFE SRCNN-based network in super-resolution reconstruction of MR images has been greatly improved. The performance is significantly improved in terms of evaluation indexes peak signal-to-noise ratio and structural similarity index measure, and the detail recovery of images is also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
无花果应助WSH采纳,获得10
刚刚
晨晨发布了新的文献求助10
刚刚
爆米花应助dyspritos采纳,获得10
刚刚
倪维发布了新的文献求助10
1秒前
沙拉酱完成签到,获得积分20
1秒前
Pamburger完成签到,获得积分10
1秒前
11完成签到,获得积分10
2秒前
3秒前
研友_qZ6wg8发布了新的文献求助30
3秒前
沙拉酱发布了新的文献求助10
4秒前
七田皿发布了新的文献求助10
4秒前
4秒前
5秒前
猫和老鼠发布了新的文献求助20
5秒前
顺利毕业发布了新的文献求助10
6秒前
搜集达人应助漾漾采纳,获得10
6秒前
烟花应助jack采纳,获得10
6秒前
7秒前
科研通AI6应助suansuan采纳,获得10
7秒前
7秒前
灵巧大地完成签到,获得积分10
7秒前
7秒前
喵咪发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
xxxwww完成签到,获得积分10
8秒前
葵小葵完成签到,获得积分10
8秒前
8秒前
任性的飞雪完成签到,获得积分10
8秒前
8秒前
天黑黑发布了新的文献求助10
9秒前
lailai007发布了新的文献求助10
9秒前
Barium发布了新的文献求助10
9秒前
9秒前
luk发布了新的文献求助10
9秒前
ding应助小猪采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240