已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Super-resolution reconstruction of magnetic resonance images based on multi-scale feature extraction Super-Resolution Convolution Neural Network

人工智能 特征提取 计算机科学 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 迭代重建 人工神经网络 卷积神经网络 联营 图像分辨率 计算机视觉 语言学 哲学
作者
Wei Wang,Rui Feng,XiuHan Li,Junxiao Yu,Da Cao,YiShuo Li,Xiaoling Wu
出处
期刊:Digital medicine [Medknow Publications]
卷期号:8: 11-11
标识
DOI:10.4103/digm.digm_43_21
摘要

Background: Low-resolution magnetic resonance imaging (MRI) has high imaging speed, but the image details cannot meet the needs of clinical diagnosis. More and more researchers are interested in neural network-based reconstruction methods. How to effectively process the super-resolution reconstruction of the low-resolution images has become highly valuable in clinical applications. Methods: We introduced Super-Resolution Convolution Neural Network (SRCNN) into the reconstruction of magnetic resonance images. The SRCNN consists of three layers, the image feature extraction layer, the nonlinear mapping layer, and the reconstruction layer. For the feature extraction layer, a multi-scale feature extraction (MFE) method was used to extract the features in different scales by involving three different levels of views, which is superior to the original feature extraction in views with fixed size. Compared with the original feature extraction only in fixed size views, we used three different levels of views to extract the features of different scales. This MFE could also be combined with residual learning to improve the performance of MRI super-resolution reconstruction. The proposed network is an end-to-end architecture. Therefore, no manual intervention or multi-stage calculation is required in practical applications. The structure of the network is extremely simple by omitting the fully connected layers and the pooling layers from traditional Convolution Neural Network. Results and Conclusions: After comparative experiments, the effectiveness of the MFE SRCNN-based network in super-resolution reconstruction of MR images has been greatly improved. The performance is significantly improved in terms of evaluation indexes peak signal-to-noise ratio and structural similarity index measure, and the detail recovery of images is also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助摸摸采纳,获得10
2秒前
FashionBoy应助Lu采纳,获得10
2秒前
Xw发布了新的文献求助10
2秒前
3秒前
HZ发布了新的文献求助10
3秒前
5秒前
congenialboy发布了新的文献求助10
6秒前
桐桐应助标致的问晴采纳,获得10
9秒前
研究牛王发布了新的文献求助10
9秒前
nito完成签到,获得积分10
9秒前
11秒前
11秒前
14秒前
14秒前
14秒前
15秒前
16秒前
Lu发布了新的文献求助10
16秒前
西哥完成签到 ,获得积分10
17秒前
摸摸完成签到,获得积分20
18秒前
18秒前
19秒前
猪猪hero应助hanleiharry1采纳,获得10
20秒前
dd发布了新的文献求助10
21秒前
摸摸发布了新的文献求助10
21秒前
肃肃其羽完成签到 ,获得积分10
21秒前
Owen应助研究牛王采纳,获得10
22秒前
23秒前
Rondab应助鞑靼采纳,获得10
24秒前
李健的小迷弟应助chang采纳,获得10
24秒前
三井库里完成签到,获得积分10
25秒前
zplease完成签到,获得积分10
25秒前
25秒前
sycsyc完成签到,获得积分10
26秒前
28秒前
29秒前
三井库里发布了新的文献求助10
29秒前
30秒前
HZ完成签到,获得积分20
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190