A deep learning based method benefiting from characteristics of patents for semantic relation classification

计算机科学 关系(数据库) 利用 相似性(几何) 人工智能 自然语言处理 连接(主束) 语义关系 语义相似性 深度学习 联想(心理学) 情报检索 基础(线性代数) 数据挖掘 数学 图像(数学) 心理学 计算机安全 神经科学 认知 心理治疗师 几何学
作者
Liang Chen,Shuo Xu,Lijun Zhu,Jing Zhang,Guancan Yang,Haiyun Xu
出处
期刊:Journal of Informetrics [Elsevier]
卷期号:16 (3): 101312-101312 被引量:4
标识
DOI:10.1016/j.joi.2022.101312
摘要

The deep learning has become an important technique for semantic relation classification in patent texts. Previous studies just borrowed the relevant models from generic texts to patent texts while keeping structure of the models unchanged. Due to significant distinctions between patent texts and generic ones, this enables the performance of these models in the patent texts to be reduced dramatically. To highlight these distinct characteristics in patent texts, seven annotated corpora from different fields are comprehensively compared in terms of several indicators for linguistic characteristics. Then, a deep learning based method is proposed to benefit from these characteristics. Our method exploits the information from other similar entity pairs as well as that from the sentences mentioning a focal entity pair. The latter stems from the conventional practices, and the former from our meaningful observation: the stronger the connection between two entity pairs is, the more likely they belong to the same relation type. To measure quantitatively the connection between two entity pairs, a similarity indicator on the basis of association rules is raised. Extensive experiments on the corpora of TFH-2020 and ChemProt demonstrate that our method for semantic relation classification is capable of benefiting from characteristic of patent texts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aacc956发布了新的文献求助10
刚刚
刚刚
谨慎涵柏完成签到,获得积分10
1秒前
快乐的如风完成签到,获得积分10
2秒前
3秒前
吃猫的鱼完成签到,获得积分10
3秒前
脑洞疼应助润润轩轩采纳,获得10
4秒前
刘文静完成签到,获得积分10
5秒前
Southluuu发布了新的文献求助10
5秒前
chenjyuu发布了新的文献求助10
5秒前
5秒前
粗暴的仙人掌完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
logic发布了新的文献求助10
6秒前
习习应助生动的雨竹采纳,获得10
6秒前
bo完成签到 ,获得积分10
6秒前
迟大猫应助啵乐乐采纳,获得10
7秒前
安雯完成签到 ,获得积分10
7秒前
HuLL完成签到,获得积分10
7秒前
Yolo完成签到 ,获得积分10
7秒前
难过的慕青完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
10秒前
无花果应助sunzhiyu233采纳,获得10
10秒前
韭黄完成签到,获得积分20
10秒前
11秒前
诚c发布了新的文献求助10
11秒前
自然秋柳完成签到 ,获得积分10
11秒前
我是老大应助经法采纳,获得10
11秒前
默默的皮牙子应助经法采纳,获得10
11秒前
orixero应助经法采纳,获得10
11秒前
小马甲应助经法采纳,获得10
11秒前
柚子成精应助经法采纳,获得10
12秒前
小蘑菇应助经法采纳,获得10
12秒前
深情安青应助经法采纳,获得10
12秒前
李爱国应助经法采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759