Prognosis of Cervical Cancer Disease by Applying Machine Learning Techniques

特征选择 机器学习 随机森林 人工智能 宫颈癌 计算机科学 支持向量机 逻辑回归 Lasso(编程语言) 决策树 特征(语言学) 贝叶斯网络 朴素贝叶斯分类器 树(集合论) 癌症 医学 数学 内科学 数学分析 万维网 哲学 语言学
作者
Gaurav Kumawat,Santosh K. Vishwakarma,Prąsun Chakrabarti,Pankaj Chittora,Tulika Chakrabarti,Jerry Chun‐Wei Lin
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:32 (01) 被引量:20
标识
DOI:10.1142/s0218126623500196
摘要

Cervical cancer is one of the deadliest diseases in women worldwide. It is caused by long-term infection of the skin cells and mucosal cells of the genital area of women. The most disturbing thing about this cancer is the fact that it does not show any symptoms when it occurs. In the diagnosis and prognosis of cervical cancer disease, machine learning has the potential to help detect it at an early stage. In this paper, we analyzed different supervised machine learning techniques to detect cervical cancer at an early stage. To train the machine learning model, a cervical cancer dataset from the UCI repository was used. The different methods were evaluated using this dataset of 858 cervical cancer patients with 36 risk factors and one outcome variable. Six classification algorithms were applied in this study, including an artificial neural network, a Bayesian network, an SVM, a random tree, a logistic tree, and an XG-boost tree. All models were trained with and without a feature selection algorithm to compare the performance and accuracy of the classifiers. Three feature selection algorithms were used, namely (i) relief rank, (ii) wrapper method and (iii) LASSO regression. The maximum accuracy of 94.94% was recorded using XG Boost with complete features. It is also observed that for this dataset, in some cases, the feature selection algorithm performs better. Machine learning has been shown to have advantages over traditional statistical models when it comes to dealing with the complexity of large-scale data and uncovering prognostic features. It offers much potential for clinical use and for improving the treatment of cervical cancer. However, the limitations of prediction studies and models, such as simplified, incomplete information, overfitting, and lack of interpretability, suggest that further efforts are needed to improve the accuracy, reliability, and practicality of clinical outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
2秒前
3秒前
丰知然应助Linsey采纳,获得10
3秒前
4秒前
5秒前
5秒前
Owen应助六个核桃采纳,获得10
5秒前
小亿发布了新的文献求助10
7秒前
小亿发布了新的文献求助10
7秒前
zaiyi发布了新的文献求助10
7秒前
8秒前
流星发布了新的文献求助10
8秒前
小亿发布了新的文献求助10
9秒前
9秒前
9秒前
菠萝菠萝哒应助Shuo Yang采纳,获得300
11秒前
11秒前
坚定的琦发布了新的文献求助30
13秒前
16秒前
20秒前
小家伙完成签到 ,获得积分10
20秒前
20秒前
酷炫的靖仇完成签到,获得积分10
21秒前
22秒前
23秒前
Vicente发布了新的文献求助10
25秒前
六个核桃发布了新的文献求助10
25秒前
Luna发布了新的文献求助10
26秒前
Jana应助火乐采纳,获得30
27秒前
搜集达人应助YIMI采纳,获得10
27秒前
ZXF100完成签到,获得积分10
28秒前
科研通AI2S应助阵雨采纳,获得10
28秒前
华仔应助无情的宛儿采纳,获得20
29秒前
JamesPei应助笑弯了眼采纳,获得10
29秒前
左手树发布了新的文献求助10
31秒前
31秒前
无花果应助mashichuang采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320