Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Song Su,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:2
标识
DOI:10.1002/mp.15873
摘要

Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately.The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN).A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC.Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]).Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巧可脆脆完成签到,获得积分10
刚刚
无私丹秋发布了新的文献求助50
1秒前
明轩完成签到,获得积分10
1秒前
双楠应助专注梦松采纳,获得10
2秒前
阿牛完成签到,获得积分10
2秒前
毅力发布了新的文献求助10
2秒前
平淡小白菜完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
平常如天发布了新的文献求助10
4秒前
Eternity完成签到,获得积分10
4秒前
玩命的寄翠完成签到 ,获得积分10
4秒前
sunc发布了新的文献求助10
4秒前
慕青应助佰斯特威采纳,获得10
4秒前
新新完成签到,获得积分10
5秒前
5秒前
上官若男应助TT采纳,获得10
5秒前
5秒前
英姑应助轻松无剑采纳,获得10
6秒前
Akim应助柚子采纳,获得10
6秒前
烟花应助KY Mr.WANG采纳,获得10
6秒前
黎明的第一道曙光完成签到,获得积分10
6秒前
6秒前
LIGHT完成签到,获得积分10
7秒前
传奇3应助猪猪hero采纳,获得10
7秒前
Tourist应助畅快的听枫采纳,获得30
8秒前
LDDD发布了新的文献求助10
8秒前
魔幻老黑完成签到,获得积分20
9秒前
打打应助猪突猛进采纳,获得10
9秒前
张二拿应助阿言采纳,获得10
9秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
congconglyu发布了新的文献求助10
9秒前
优雅的纸鹤完成签到,获得积分10
10秒前
chenamy完成签到,获得积分10
10秒前
10秒前
在水一方应助董菲音采纳,获得10
10秒前
lee发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942