Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Su Song,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:4
标识
DOI:10.1002/mp.15873
摘要

Abstract Background Breast cancer (BC) is among the most common cancers worldwide. Machine learning–based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately. Purpose The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN). Methods A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty‐six radiomics features were extracted from each region of interest for ALN in contrast‐enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross‐validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC. Results Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]). Conclusions Combinations of feature selection methods and machine learning‐based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poki发布了新的文献求助600
1秒前
小事完成签到 ,获得积分10
1秒前
浊轶完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助chennangua采纳,获得10
10秒前
勤奋的冬萱完成签到,获得积分10
10秒前
江江完成签到 ,获得积分10
13秒前
隐形曼青应助迷你的赛凤采纳,获得10
17秒前
雪儿完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
ymmmaomao23完成签到,获得积分10
22秒前
等待含羞草完成签到 ,获得积分10
23秒前
wang完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
king完成签到 ,获得积分10
25秒前
zhuxd完成签到 ,获得积分10
26秒前
小石头完成签到 ,获得积分10
28秒前
胖胖完成签到 ,获得积分0
33秒前
feihua1完成签到 ,获得积分10
35秒前
LL完成签到 ,获得积分10
35秒前
36秒前
量子星尘发布了新的文献求助10
41秒前
41秒前
8D完成签到,获得积分10
42秒前
blueweier完成签到 ,获得积分10
44秒前
易点邦应助迷你的赛凤采纳,获得10
48秒前
量子星尘发布了新的文献求助10
50秒前
51秒前
jjy完成签到,获得积分10
51秒前
小玲子完成签到 ,获得积分10
52秒前
干净的人达完成签到 ,获得积分10
53秒前
寒冷尔柳完成签到 ,获得积分10
55秒前
cristole完成签到 ,获得积分10
57秒前
湖工大保卫处完成签到,获得积分10
57秒前
NEPUJuly发布了新的文献求助10
57秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
害羞的天真完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936