Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Su Song,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:4
标识
DOI:10.1002/mp.15873
摘要

Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately.The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN).A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC.Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]).Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
4秒前
白兔奶糖发布了新的文献求助10
4秒前
感动友桃应助daisy采纳,获得10
5秒前
Nxx发布了新的文献求助10
5秒前
冷艳小刺猬完成签到 ,获得积分10
5秒前
llay发布了新的文献求助10
6秒前
bingqing发布了新的文献求助30
6秒前
6秒前
LM发布了新的文献求助10
6秒前
6秒前
7秒前
干涸的脑瓜完成签到 ,获得积分10
7秒前
杨德帅发布了新的文献求助10
8秒前
9秒前
retosure发布了新的文献求助10
9秒前
9秒前
Wang_ZiMo发布了新的文献求助10
10秒前
周小熊完成签到 ,获得积分10
10秒前
Yongander发布了新的文献求助10
10秒前
linlinjx完成签到,获得积分10
10秒前
jimskylxk完成签到,获得积分10
11秒前
杨德帅发布了新的文献求助10
13秒前
Yeiiiiii完成签到 ,获得积分10
13秒前
牛爷爷完成签到,获得积分10
13秒前
13秒前
14秒前
Lucas应助酷炫的毛巾采纳,获得50
14秒前
14秒前
aaron发布了新的文献求助10
15秒前
机灵铭发布了新的文献求助10
16秒前
漂亮的麦片完成签到 ,获得积分10
16秒前
科研通AI6应助优秀采纳,获得10
16秒前
安静的缘分完成签到,获得积分10
17秒前
Nxx完成签到,获得积分10
18秒前
ulung完成签到 ,获得积分10
18秒前
daisy完成签到,获得积分10
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345