Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Song Su,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:2
标识
DOI:10.1002/mp.15873
摘要

Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately.The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN).A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC.Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]).Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanao应助靓丽安珊采纳,获得10
刚刚
hao发布了新的文献求助10
2秒前
夕赣完成签到 ,获得积分10
3秒前
5秒前
三木完成签到 ,获得积分10
5秒前
晨雾完成签到 ,获得积分10
8秒前
王螺丝完成签到,获得积分10
8秒前
雷子发布了新的文献求助10
9秒前
lyne完成签到 ,获得积分10
10秒前
10秒前
zhang完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
tramp应助科研通管家采纳,获得10
14秒前
哎嘿应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
tramp应助科研通管家采纳,获得20
14秒前
哎嘿应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
梓泽丘墟应助科研通管家采纳,获得10
15秒前
Gilana应助科研通管家采纳,获得20
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
coco应助科研通管家采纳,获得20
15秒前
哎嘿应助科研通管家采纳,获得10
15秒前
61forsci完成签到,获得积分10
17秒前
靓丽安珊完成签到,获得积分10
18秒前
纯真书兰完成签到,获得积分10
19秒前
LONG完成签到 ,获得积分10
19秒前
左幻竹完成签到,获得积分10
21秒前
酒尚温完成签到 ,获得积分10
21秒前
wxy21完成签到,获得积分10
21秒前
大雄完成签到,获得积分20
22秒前
丰富梦容完成签到 ,获得积分10
23秒前
工藤新一完成签到 ,获得积分10
24秒前
syne完成签到,获得积分10
30秒前
山楂看海完成签到,获得积分10
33秒前
法克西瓜汁完成签到,获得积分10
34秒前
Juan完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175