亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Su Song,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:4
标识
DOI:10.1002/mp.15873
摘要

Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately.The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN).A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC.Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]).Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iman完成签到,获得积分10
48秒前
48秒前
yaoli0823发布了新的文献求助10
53秒前
烟花应助Ljm采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
yaoli0823完成签到,获得积分10
2分钟前
方沅完成签到,获得积分10
4分钟前
科研通AI2S应助怕黑斑马采纳,获得30
5分钟前
充电宝应助风辞采纳,获得10
5分钟前
5分钟前
5分钟前
风辞发布了新的文献求助10
5分钟前
风辞完成签到,获得积分10
5分钟前
6分钟前
6分钟前
Orange应助科研通管家采纳,获得10
6分钟前
活泼学生发布了新的文献求助10
6分钟前
活泼学生完成签到,获得积分10
6分钟前
6分钟前
予秋发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
袁青寒发布了新的文献求助10
7分钟前
袁青寒发布了新的文献求助10
7分钟前
袁青寒发布了新的文献求助10
7分钟前
袁青寒发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助30
8分钟前
8分钟前
如意竺完成签到,获得积分10
8分钟前
真银铃完成签到,获得积分10
9分钟前
蜡笔小新完成签到,获得积分10
9分钟前
ys完成签到 ,获得积分10
9分钟前
105完成签到 ,获得积分10
9分钟前
Alisha发布了新的文献求助10
9分钟前
WebCasa完成签到,获得积分10
9分钟前
冷傲半邪完成签到,获得积分10
10分钟前
GPTea应助科研通管家采纳,获得20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900917
求助须知:如何正确求助?哪些是违规求助? 4180573
关于积分的说明 12977050
捐赠科研通 3945385
什么是DOI,文献DOI怎么找? 2164089
邀请新用户注册赠送积分活动 1182384
关于科研通互助平台的介绍 1088678