共晶体系
三元运算
咪唑
烟气
吉布斯自由能
化学
热力学
焓
吸收(声学)
物理化学
材料科学
有机化学
计算机科学
物理
复合材料
程序设计语言
合金
作者
Yongqi Zhao,Jinxiao Dou,Ruijia Dai,Hongcun Bai,Salman Khoshk Rish,Xinxin Xiao,Jianglong Yu
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2022-07-22
卷期号:36 (15): 8351-8359
被引量:4
标识
DOI:10.1021/acs.energyfuels.2c01435
摘要
New ternary deep eutectic solvents (DESs), including imidazole (Im), ethylene glycol (EG), and methyltriphenyl phosphonium bromide (MTPB), were synthesized at different molar ratios to absorb SO2 in flue gas. Excitingly, the EG–Im–MTPB (1:2:1) DES has achieved the unexpected achievement of its absorption capacity being greatly improved to 0.65 g of SO2/g of DES (4.43 mol/mol) at 3000 ppm and 30 °C, which is the best performing DES for capturing SO2 under the same conditions ever reported. The aftereffects of thermodynamic investigation demonstrate that there is a solid compound communication between EG–Im–MTPB (1:2:1) DES and SO2. In particular, the enthalpy change (ΔrHm), entropy change (ΔrSm), and Gibbs free energy change (ΔrGm) were plainly determined as −50.45 kJ/mol, −114.57 J mol–1 K–1, and −16.20 kJ/mol, separately. The Fourier transform infrared, 1H nuclear magnetic resonance, and quantum chemistry calculation results confirm that multiple active sites, including the N atom of Im and the Br atom of MTPB, are the main factors by which DES effectively absorbs SO2. Further, a UNIQUAC method by Aspen Plus V12 is set up for the SO2 absorption process with 6000 m3/h flue gas, indicating that the EG–Im–MTPB (1:2:1) DES can completely absorb SO2 in the flue gas when the consumption of DES is 26.8 m3/h.
科研通智能强力驱动
Strongly Powered by AbleSci AI