Parameter calibration in wake effect simulation model with stochastic gradient descent and stratified sampling

唤醒 校准 计算机科学 采样(信号处理) 风力发电 趋同(经济学) 风速 随机梯度下降算法 统计 气象学 数学 工程类 人工神经网络 人工智能 地理 航空航天工程 电气工程 滤波器(信号处理) 经济 经济增长 计算机视觉
作者
Bingjie Liu,Xubo Yue,Eunshin Byon,Raed Al Kontar
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:16 (3) 被引量:9
标识
DOI:10.1214/21-aoas1567
摘要

As the market share of wind energy has been rapidly growing, wake effect analysis is gaining substantial attention in the wind industry. Wake effects represent a wind shade cast by upstream turbines to the downwind direction, resulting in power deficits in downstream turbines. To quantify the aggregated influence of wake effects on the power generation of a wind farm, various simulation models have been developed, including Jensen's wake model. These models include parameters that need to be calibrated from field data. Existing calibration methods are based on surrogate models that impute the data under the assumption that physical and/or computer trials are computationally expensive, typically at the design stage. This, however, is not the case where large volumes of data can be collected during the operational stage. Motivated by the wind energy application, we develop a new calibration approach for big data settings without the need for statistical emulators. Specifically, we cast the problem into a stochastic optimization framework and employ stochastic gradient descent to iteratively refine calibration parameters using randomly selected subsets of data. We then propose a stratified sampling scheme that enables choosing more samples from noisy and influential sampling regions and thus reducing the variance of the estimated gradient for improved convergence. Through both theoretical and numerical studies on wind farm data, we highlight the benefits of our variance-conscious calibration approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yk发布了新的文献求助10
2秒前
胜男完成签到,获得积分10
2秒前
3秒前
3秒前
DiH完成签到,获得积分10
3秒前
4秒前
明天不熬夜完成签到,获得积分10
5秒前
郭泓嵩完成签到,获得积分10
6秒前
6秒前
6秒前
樱桃小贩完成签到,获得积分0
7秒前
苹果发夹完成签到 ,获得积分10
8秒前
8秒前
张胡星发布了新的文献求助10
9秒前
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
wy.he应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
PU聚氨酯完成签到,获得积分10
12秒前
小耿完成签到,获得积分20
13秒前
科研通AI5应助怪味痘采纳,获得10
13秒前
14秒前
Elvin2527给Elvin2527的求助进行了留言
15秒前
量子星尘发布了新的文献求助10
17秒前
机智的乌发布了新的文献求助10
17秒前
RJ完成签到,获得积分10
18秒前
19秒前
20秒前
神秘玩家完成签到 ,获得积分10
22秒前
小鲨鱼发布了新的文献求助10
22秒前
CipherSage应助li199624采纳,获得10
23秒前
Lny应助max采纳,获得10
23秒前
英姑应助max采纳,获得10
24秒前
彩色的芝麻完成签到 ,获得积分10
24秒前
科研通AI6应助akz采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833